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I , NEUTRON ACOUSTODYNAMICS 

s. Yip 
R. K. Osborn 

C. Kikuchi 

ABSTRACT 
I 

An essen t i a l ly  self-contained treatment of the  theory of low- 

I energy neutron sca t te r ing  i s  given with emphasis on the- extent  t o  which 

symmetries and dynamics of the sca t te r ing  system may influence neutron- 

I nuclear co l l i s ion  processes. The general problem is  formulated using 

the  "Born Approximation" and Fermi pseudo-potential, and calculat ions 

a-2 m d e  fnr two c r y s t a l  models. The simpler Einstein c r y s t a l  i s  found 1 
i 

I 

I 

t o  be adequate i n  qua l i ta t ive ly  explaining the measured sca t t e r ing  cross 

section. For problems sens i t ive  t o  dynamical features  of the  sca t t e re r ,  

a more r e a l i s t i c  c r y s t a l  model is  careful ly  derived, and the  associated 

1 

I 

I problem of normal mode analysis,  with both standing and t rave l ing  waves, 

is  discussed i n  de ta i l .  

r e s u l t s  u se fu l  i n  the in t e rp re t a t ion  of the experimental s tud ies  of 

l a t t i c e  dynamics, pa r t i cu la r ly  i n  the d i r ec t  determination of dispersion 

It i s  shown tha t  the more elaborate model gives 
1 

I 

I r e l a t i o n s  and frequency d is t r ibu t ions .  In  obtaining the various cross 

I sect ions the concept of coherent scat ter ing i n  contrast  t o  t h a t  of in- 

te r fe rence  sca t te r ing  i s  c l ea r ly  i l l u s t r a t ed ;  su i tab le  approximations 

and meaningful l imi t ing  cases a re  obtained. Incoherence due t o  isotopic  

mixture and nuclear spin i s  a l so  discussed. It is  shown t h a t  the  r e s u l t s  

of a semi-classical  treatment are readi ly  in te rpre tab le  and should be 

he lpfu l  i n  a general  understanding of the  in te rac t ion  of low-energy 

neutrons w i t h  sol ids .  
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I. INTRODUCTION 

I 

In recent years considerable attention has been directed to- 

wards the development of neutron diffraction as a solid-state physics 

research tool. A s  with other techniques, such as ultrasonics, optical 

measurements, electron- and nuclear-spin resonances, and Mossbauer ef- 

fect, valuable information about the scattering system can be obtained 

from a neutron diffraction experiment. For example, one of the most 

significant studies made with neutrons thus far is the direct determina- 

tion of dispersion relations and frequency distributions for the normal 

modes of the crystal. Tne usefijli:ess of these rneas~rements~ as is the 

case in general, necessarily depends upon a suitable theoretical model 

for interpretation. 

Excellent fundamental(') and review( 2, papers on the theory 

of slow-neutron scattering by crystals are available in the literature; 

nevertheless, it seems to us that a discussion of some of the fundamental 

aspects is lacking. Consequently we attempt to present in this paper an 

essentially self-contained treatment of neutron interaction in an acous- 

tic field, the main purpose being to illustrate the extent to which the 

scattering is influenced by symmetries and dynamics of the scattering sys- 

tem. It will be seen that the present problem contains many of the gen- 

eral features of interaction of radiation with matter. For example, it 

provides a systematic comparison with the related problem of electron in- 

teraction in an electromagnetic field. 

when viewed from the proper prospective, neutron diffraction studies can 

be related to those using the other above-mentioned techniques. We also 

Therefore it may be possible that, 
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hope that the following work will enhance the usefulness of the existing 

literature. 

In Section I1 the differential scattering cross section is ob- 

tained by considering, somewhat classically, the scattered neutron waves 

from each scattering center in the crystal. Then after the general prob- 

lem of neutron scattering by systems is formulated in Section I11 the 

quantum results based on the Einstein crystal model are discussed in the 

next section. A considerably more realistic dynamical model for crystals 

is developed in Section V, followed by a section on normal coordinate 

transformation in which the decomposition of particle coordinates in terms 

of annihilation and creation operators is explicitly derived. A detailed 

calculation of the various elastic and inelastic cross sections for a 

monatomic crystal containing spinless particles is given in Section VI1 

where some limiting cases will be obtained. The final section contains 

a discussion of spin effects. 



11. A SEMI-CLASSICAL APPROACH 

A d e t a i l e d  analysis  of neutron s c a t t e r i n g  by macroscopic systems 

i s  necessar i ly  qui te  complicated. It  i s  therefore  i n s t r u z t i v ?  t o  present  

a preliminary discussion i n  which r igor  and a c e r t a i n  amount of d e t a i l s  

can be s a c r i f i c e d  f o r  physical  ins ight .  I n  t h i s  sect ion we w i l l  concern 

ourselves with such a n  examination of low-energy neutron s c a t t e r i n g  by 

c r y s t a l s .  The treatment i s  admittedly of an i n t u i t i v e  and semi-classical  

nature; nevertheless,  meaningful r e s u l t s  can be obtained. Since the c a l -  

culat ion and r e s u l t s  f o r  a more elaborately formulated problem w i l l  be 

discussed ia ter ,we will imt &;ell 

i s  s u f f i c i e n t  f o r  i l l u s t r a t i v e  purposes. 

d e t z i l s  of i n t e r p r e t a t i o n  beyond what 

I n  order t o  develop a theory of neutron sca t te r ing  it i s  essen- 

t i a l  t o  fkst determine i n  what way are  the calculat ions t o  be ul t imately 

cor re la ted  with measurements. 

r e t i c a l  consideration we should know what type of experiment must the theory 

explain.  Let us therefore  consider the following ideal ized experiment. A 

beam of monoenergetic neutrons impinges upon a s c a t t e r i n g  system; the i n -  

t e r a c t i o n  between the  neutrons and t a r g e t  r e s u l t s  i n  some neutrons being 

def lected from the o r i g i n a l  path with energies grea te r  o r  l e s s  than t h a t  

before the c o l l i s i o n .  

(see Figure 1). 

t rons  w i t h  a p a r t i c u l a r  energy lnay be detected,  and i n  t h i s  manner an energy 

d i s t r i b u t i o n  can be obtained. 

assume t h a t  the target-detector  separation i s  la rge  compared t o  a l l  l i n e a r  

dimensions of the sca t te r ing  system and t h a t  multiple c o l l i s i o n s  can be 

ignored. 

Clearly, before we can begin with any theo- 

The scat tered neutrons a r e  detected by a counter 

If the counter i s  energy-sensitive, then the sca t te red  neu- 

To avoid unnecessary complications we w i l l  

-3- 
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NEUTRON 
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INCIDENT NEUTRON 
WAVE VECTOR 

Figure 1. Schematic Diagram of Neutron Scattering 
Experiment . 
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It i s  obvious t h a t  a fundamental quant i ty  which character izes  such 

a measurement i s  the probabi l i ty  t h a t  an incident  neutron with given i n i t i a l  

energy w i l l  be s c a t t e r e d  i n t o  a given d i rec t ion .  That i s  t o  say, we can de- 

sc r ibe  the s c a t t e r i n g  experiment i n  terms of a d i f f e r e n t i a l  cross sec t ion  

ado, defined as the number of neutrons per second sca t te red  i n t o  a n  element 

of s o l i d  angle dR about d i rec t ion  divided by the product of number of 

incident  neutrons per cm2 per second and t o t a l  number of s c a t t e r e r s .  

h 

By t h i s  

I 

d e f i n i t i o n  adsZ depends upon the i n i t i a l  neutron energy and the angle of 

s c a t t e r i n g .  Later w e  w i l l  want t o  describe measurements using energy-sensit ive 

de tec tors  and w i l l  then introduce the d i f f e r e n t i a l  cross section which also depends 

upon f i n a l  neutron energy. 

Since the rad ia t ion  t o  be sca t te red  and measured consis ts  of a beam 

of neutrons,then what we wish t o  calculate i s  the sca t te red  current ,  given 

by the s c a t t e r e d  beam i n t e n s i t y  multiplied by the group veloci ty  of the t r a v e l -  

ing waves. If we represent the incident and s c a t t e r e d  beams as t rave l ing  

waves Jri and Jr we obtain 

(11.1) 

where si and &f a r e  incident  and sca t te red  wave vectors and N i s  the 

number of s c a t t e r e r s .  

t o  determine the  sca t te red  wave and t o  exhib i t  i t s  dependence upon the ge- 

ometric and dynamical features  of the s c a t t e r i n g  system. 

It i s  seen t h a t  given an incident  wave the problem i s  

Consider a system of par t ic les  (nuc le i )  i n  which the pos i t ion  of 

the  R-th p a r t i c l e  i s  specif ied by F&. L e t  the  incident  neutrons be repre- 

sented by a plane wave Ae with amplitude A, propagation vector 
i (ki*s-qt) 
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k. and c i r c u l a r  frequency m i .  For convenience we w i l l  put the o r i g i n  of 
V d  

our coordinates a t  one of the p a r t i c l e s  so t h a t  the incident  wave a t  t h i s  

p a r t i c l e  i s  j u s t  Ae-iwit (see Figure 2 ) ;  The incident  wave a t  the R-th 

p a r t i c l e  i s  then Ae i (hi egj-~~i t )  

ing i s  e s s e n t i a l l y  a hard-sphere in te rac t ion ,  and t h i s  implies t h a t  a t  the 

surface of the nucleus the incident  and sca t te red  waves a r e  the same. I n  

other words, the phase s h i f t  as a r e s u l t  of the c o l l i s i o n  i s  very small. 

. I t  i s  known t h a t  neutron-nuclear s c a t t e r -  

Thus the wave 

a spher ica l ly  

sca t te red  from the R-th p a r t i c l e ,  which can be expressed as  

outgoing wave i n  the asymptotic region ( R R / r  << l), i s  

where = ,ki 

(11.2) 

& h - kfg and rR, t o  a good approximation, i s  r - r - R R .  The 
%v.% 

s t rength  of the in te rac t ion  i s  given by 

r = 1 cm 

-ai, the sca t te r ing  amplitude a t  

i f  amplitude of the incident  wave i s  unity.' We note t h a t  i n  the 

usual quantum i n t e r p r e t a t i o n  the magnitude of sca t te red  neutron momentum 

kf i s  r e l a t e d  t o  the energy uf, which i s  not necessar i ly  equal t o  mi 

since EJ may contain addi t iona l  time dependence. Only if the p a r t i c l e  i s  

s t a t i o n a r y  i s  wf = m i  and kf = k i ,  and the sca t te r ing  i s  s a i d  t o  be 

e l a s t i c .  

' It should be noted t h a t  w e  have assigned a s c a t t e r i n g  length t o  a given 
nucleus, and i n  so  doing have avoided a>1 questions concerning d e t a i l s  
of the nuclear forces .  The s i t u a t i o n  is' very much l i k e  the s c a t t e r i n g  
of water waves by v e r t i c a l  posts made of d i f f e r e n t  mater ia ls .  The s c a t t e r -  
ing amplitudes of the various posts w i l l  be d i f f e r e n t ,  and i n  pr inc ip le  
can be calculated i f  the necessary theory were ava i lab le .  
of such a theory the a l t e r n a t i v e  solut ion w i l l  be t o  measure the d i f f e r e n t  
s c a t t e r i n g  amplitudes. 
view: t h a t  i s  t o  say, we s h a l l  characterize the a b i l i t y  of a nucleus i n  
s c a t t e r i n g  neutrons by the sca t te r ing  length a,  an experimentally de te r -  
mined quant i ty .  The negative s ign i s  chosen t o  agree with convention. 

I n  the absence 

O u r  a t t i t u d e  follows e s s e n t i a l l y  the  l a t t e r  p5nt  of 

I n t e r e s t e d  reader may see J. M. B l a t t  and V. Weisskopf, Theoretical  Nuclear 
Physics, Wiley (1952). 
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I 

Figure 2. Coordinates f o r  Neutron Scat ter ing by 
P a r t i c l e s .  
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The t o t a l  sca t te red  wave i s  a superposit ion of waves s c a t t e r e d  

by a l l  p a r t i c l e s ,  

where kf i s  understood t o  depend upon the  time dependence of $. For 

the  moment we consider a l l  the p a r t i c l e s  t o  be held f ixed.  

Of p a r t i c l e  motion the f a c t o r  

I n  the  absence 

eikfr - - eikir can be taken outs ide the sum- 

mation, and the d i f f e r e n t i a l  cross sect ion i s  found t o  be 

It w i l l  be ~ ~ i ~ ~ - ~ i  f o r  crystals  the s;;Tu;Gtioz ~f t h e  Tvrarigus phase fzc+ers  

leads t o  the well-known Bragg condition f o r  interference s c a t t e r i n g ,  a r e s u l t  

of superposing waves sca t te red  from ordered arrays of c r y s t a l  planes.  

course, i n  the evaluation,terms f o r  which R = R 1  cons t i tu te  the contribu- 

t i o n  t o  d i r e c t  sca t te r ing ,  a r e s u l t  of s ing le  p a r t i c l e  e f f e c t s .  

s p e c i a l  case of only one s c a t t e r e r  present,  the t o t a l  cross sec t ion  becomes 

Of 

I n  the 

a = .f ad0 = 4rra 2 , 

where 

s c a t t e r i n g  i s  seen t o  be i so t ropic .  

a i s  of ten  re fer red  t o  as the bound-atom s c a t t e r i n g  length,  and 

I n  order t o  study the dependence of cross sec t ion  upon dynamics 

of the  s c a t t e r i n g  system we consider a hypothetical  simple cubic, monatomic 

c r y s t a l  containing N nuclei  with zero spin,  each executing independent 

o s c i l l a t i o n s  about i t s  equilibrium posi t ion ( l a t t i c e  s i t e )  , 

taneous pos i t ion  of the R-th p a r t i c l e  becomes R,?.(t) = + gj( t ) ,  where 

, x ~  i s  the equilibrium pos i t ion  and n a ( t )  the instantaneous displacement 

The instan-  
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from 21, 

= YVI A cos(Ot-A& . (11.4) 

I n  t h i s  simple descr ip t ion  a l l  p a r t i c l e s  have the same amplitude A and 

fundamental v ibra t iona l  frequency u). The f a c t  t h a t  the o s c i l l a t i o n s  of 

any two p a r t i c l e s  are not coupled is  expressed by the presence of an a r b i -  

t r a r y  phase AR. 

wave may be wr i t ten  as 

Using t h i s  t i m e  dependence we f i n d  t h a t  t h e  sca t te red  

since 

00 

e ixcOsy = J0(x)  + 2 C inJn(x)cos(ny)  , 
n=l 

which i s  readi ly  obtained from the generating funct ion of Bessel function 

of f i rs t  kind. The leading term i n  the sum contains no t i m e  dependence and 

i s  seen t o  be the e l a s t i c  p a r t  of the sca t te red  wave while the remaining 

terms correspond t o  s c a t t e r i n g  with energy transfC:.,: ( i n e l a s t i c ) ,  the energy 

exchange f o r  the n-th term being 9 - u i  = 2 nu. I n  computing the d i f f e r -  

e n t i a l  cross sec t ion  we can ignore the cross terms. This i s  because i n  any 

physical  measurement the i n t e n s i t y  i s  a c t u a l l y  in tegra ted  over an i n t e r v a l  

Of time which i s  very la rge  compared t o  time of f l i g h t  o r  i n t e r a c t i o n  time, 

hence a l l  cross terms vanish. The cross sect ion therefore  becomes a sum 

of p a r t i a l  cross sect ions,  each corresponds t o  a s p e c i f i c  amount of energy 

t r a n s f e r  , 
O0 +n 

adR = C 0- dR , 
n=O 
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I 

where upper and lower signs denote the increase o r  decrease of neutron 

energy by an  amount n&w. The d iscre te  and uniform nature of the i n -  

e l a s t i c  s c a t t e r i n g  i s  expected since i n  quantum theory an o s c i l l a t o r  may 

undergo changes only i n  multiples of i t s  l e v e l  spacing ‘hu. The p a r t i a l  

cross sect ions cannot be measured unless the measurement i s  performed with 

an energy-sensit ive counter s o  t h a t  sca t te red  neutrons with d i f f e r e n t  

energies may be d i f f e r e n t i a t e d .  In  order t o  e x h i b i t  the energy exchange 

i n  a s c a t t e r i n g  process more e x p l i c i t l y  l e t  us def ine a d i f f e r e n t a l  cross  

sec t ion  udRdEf, which depends upon f i n a l  neutron energy, as 

with 

where 6(x) i s  the Dirac d e l t a .  It i s  t o  be understood t h a t  the i n t e r v a l  

of energy in tegra t ion  depends upon the de tec t ion  system. 

l u t i o n  of the instrument i s  l e s s  than the l e v e l  spacing then 

obtained f o r  any given n. 

s e n s i t i v e  then only udQ, which contains e l a s t i c  as wel l  as a l l  the i n e l a s t i c  

contr ibut ions,  w i l l  be measured. 

t o  confine our a t t e n t i o n  t o  two lowest-order processes, 

If the f i n i t e  reso- 
+n 
o- dR can be 

On the other hand, i f  the counter i s  not energy- 

For our purposes, it w i l l  be s u f f i c i e n t  

@dRdEf = 1 6(Ef-Ei)6(&.A) I aQe irc*x -R 
N a 

2dOdEf , 

We note t h a t  interference e f f e c t s  do not  contr ibute  t o  f i r s t - o r d e r  i n e l a s t i c  

s c a t t e r i n g ,  a r e s u l t  equally v a l i d  for n > 1. This i s  a consequence of 
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averaging over a l l  a r b i t r a r y  phases 

expected s ince there  i s  no co r re l a t ion  among the  various v ibra t ions .  The 

e f f e c t s  of such co r re l a t ion  m e  seen i n  the following discussion.  

Aj  and the l ack  of in te r fe rence  i s  

We next introduce add i t iona l  complexity i n t o  our ana lys i s  by t r e a t -  

ing  the  p a r t i c l e  o s c i l l a t i o n s  i n  terms of t r ave l ing  waves. It  w i l l  be shown 

l a t e r  t h a t  under c e r t a i n  reasonable assumptions regarding the i n t e r - p a r t i c l e  

p o t e n t i a l  one can wr i te  i n  general  

where & i s  the  propagation vector and summation over X i s  a c t u a l l y  a 

double  si^?;, =ne invs lv icg  the  N ~ l l n w e r l  va-liues of k and another the 

th ree  values of CD for each given &. A s  before we obtained the  e l a s t i c  

d i f f e r e n t i a l  cross  sec t ion  as 

% 

We note t h a t  Jo(c-hi) 

1 - th  o s c i l l a t i o n  mode. (3)  

should be averaged over a thermal d i s t r i b u t i o n  of 

This i s  because i f  we regard Ax as the ampli- 
2 2  

tude of the  X-th o s c i l l a t o r  whose energy i s  A ~ U X  then the re  e x i s t s  a 

d i s t r i b u t i o n  of AX given by 

where ko i s  Boltzmann constant  and T the temperature of the  system. 
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which can be r e a d i l y  obtained by using the s e r i e s  representat ion of 

and in tegra t ing  term by term. 

fac tor  s t rongly at tenuates  the sca t te r ing  a t  high temperature and la rge  

momentum t r a n s f e r  and i s  uni ty  a t  T = 0. Since the  average energy of 

the o s c i l l a t o r  i s  

by -($-Lix) <Ax>/4, where <Ah> i s  average of the amplitude squared. 

The e l a s t i c  cross sec t ion  now becomes 

Jo 

It i s  in te res t ing  t o  observe t h a t  t h i s  

koT by equipar t i t ion  then we may replace the exponent 

A 2  2 2 

-2w i s  known as the Debye- A 2 2  where W = 1 c (~*&l) (Ax> . The fac tor  e 

IA!zlkr f z c t s r ,  c r t g h z l l y  derived i n  

temperature e f f e c t s .  

i n  a la ter  calculat ion.  

2 h  
X-ray d i f f r a c t i o n  t o  account f o r  

We w i l l  obtain the quantum analogues of t h i s  f a c t o r  

Unfortunately the i n e l a s t i c  cross sect ions a r e  not as r e a d i l y  

obtained. 

treatment we can b e s t  avoid excessive manipulation by considering a s p e c i a l  

case.  

t i c u l a r  mode of o s c i l l a t i o n ,  say the 

regard a l l  the other terms i n  (3)  t o  be small by comparison and immediately 

obtain 

Since the complete problem w i l l  be discussed i n  the quantum 

Suppose we are only in te res ted  i n  the s c a t t e r i n g  produced by a par- 

1-th mode, then we may e f f e c t i v e l y  

where we  have used the small argument representat ion,  
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It i s  noted t h a t  i n e l a s t i c  interference e f f e c t s  a r e  present due t o  ( 5 )  

i n  which a l l  o s c i l l a t i o n s  a r e  dynamically coupled. Also one sees t h a t  

the cross sec t ion  var ies  as the square of momentum t r a n s f e r  and inversely 

as the square of v ibra t iona l  frequency. F ina l ly  we C G L ?  t ha t  the above 

r e s u l t s  are independent of whether energy i s  gained or l o s t ,  which, as we 

w i l l  see ,  i s  a d i r e c t  consequence of c l a s s i c a l  ana lys i s .  

Thus far we have attempted to  show t h a t  c e r t a i n  q u a l i t a t i v e  as- 

pects of neutron sca t te r ing  can be illuminated by a s implif ied semi-classical  

approach. The treatment i s  admittedly not rigorous nor a r e  the cases ex- 

amined the most r e a l i s t i c  and sophis t icated modelsone can construct ,  never- 

theless ,  t k e y  dc lead t o  r e s u l t s  pertinent t o  the understanding of the 

physics involved and provide a systematic comparison with the rigorous 

quantum mechanical ca lcu la t ion  given i n  the la ter  sect ions.  



111. GENERAL FORMULATION OF NEUTRON 
SCATTERING BY MACROSCOPIC SYSTEMS 

We w i l l  now derive the quantum formalism which w i l l  be used i n  

subsequent calculat ions t o  pred ic t  r e s u l t s  t h a t  can be correlated with 

information obtained from neutron-diffraction experiments. 

t i o n  of the c o l l i s i o n  process it is not  necessary t o  specify the physical 

s t a t e  of the s c a t t e r e r  s o  t h a t  the formulation i s  equally va l id  whether the 

s c a t t e r i n g  system i s  i n  gaseous, liquid, or s o l i d  s t a t e ;  l a t e r  appl icat ions 

w i l l ,  of course, be r e s t r i c t e d  t o  neutron in te rac t ions  with c r y s t a l  l a t t i c e s .  

It  w i l l  be seen t h a t  the present analysis does not include neutron-nuclear 

I n  the descr ip-  

sp,lii interaction. rrn- rlle c.rLcLts I dile t o  p r e s e x e  of zuzlesr  sp izs  will he &is- 

cussed separately i n  a l a t e r  sec t ion .  

Consider again the idealized experiment of Section I1 where 

I n  quantum theory it i s  wel l  known that  the p a r t i c l e  current i s  given by 

where 9 i s  the p a r t i c l e  wave function. I n  order t o  obtain the neutron 

wave funct ion we character ize  the sca t te r ing  process by the s ta t ionary  

Sch&di nger e qua ti on 

HY = &Y, (111.1) 

where 

wave funct ion i s  denoted as Y. The appropriate Hamiltonian i s  

i s  the t o t a l  energy of the system, s c a t t e r e r  plus neutron, whose 

= \ ,  p2/2m + Hs + V , 
' -14- 
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where p2/2m i s  the k ine t i c  energy of the  neutron, Hs the Hamiltonian 

of the sca t t e r ing  system, and V the neutron-nuclear i n t e rac t ion  poten- 

t i a l .  

e x i s t s  a complete, orthonormal s e t  of functions {an} 

HsQn = cnQn , where En i s  the  eigenvalue corresponding t o  the n-th 

e igens ta te .  Then w e  can wri te  

h\ 

It i s  expected t h a t  given a system whose Hamiltonian i s  Hs, there  

which s a t i s f y  

where r represents  neutron posi t ion and 5- = {$,l,R2,. . . ,E.,) represents  

the  s e t  of 3N coordinates of a system containing N p a r t i c l e s .  qn(s.) 

is seen t o  be that ~ e u t r s n  state vhich corresponds t o  the  

\ \\ 

n-th state of 

the sca t t e r ing  system. 

Inser t ing  the above expansion i n t o  (l), we obtain 

where 

Writing the l i n e a r  momentum operators p as 3 V ..,, i \.,, ' 

(111.2) 

where 

Equation (2)  represents  a system of in t eg ro -d i f f e ren t i a l  equations and 

i s  b e s t  t r ea t ed  i n  the form of i n t e g r a l  equations through the  use of 
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Green's function. If we observe t h a t  

then because (2) i s  a l i n e a r  equation, 

Physically,  i f  there  were no in te rac t ion  between the neutron and s c a t t e r e r  

then we would expect the wave function t o  be j u s t  the product of the i n -  

c ident  neutron and i n i t i a l  system wave funct ions.  Hence, 

where no i s  the i n i t i a l  s ta te  of the s c a t t e r i n g  system. The f i rs t  equa- 

t i o n  i n  (3) can be solved(l0)  t o  give 

Since i n  the region where the neutrons a r e  counted r >> 1, terms of 

order r-2 and higher can be ignored. Then 

and 

According t o  the " F i r s t  Born Approximation", the so lu t ion  t o  (4) i s  ob- 

ta ined  by s e t t i n g  Jrnl ( r t )  = ~ ! n o e i k i ' ~ ? ~ l ;  i n  other words we i t e r a t e  once 
.1% 
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t o  ge t  

The f i r s t  term i n  ( 5 )  i s  the unscattered incident  beam and the second term 

can be in te rpre ted  as the sca t te red  spherical ly  outgoing wave whose ampli- 

tude i s  

(111.6) 

Now the d i f f e r e n t i a l  sca t te r ing  cross sect ion f o r  t h e  correspond- 

ing neutron i n i t i a l  and f i n a l  momenta lei and kn, and system i n i t i a l  

and f i n a l  states no and n becomes 

2 
f I d R .  
nn0 

The cross  sec t ion  i s  wr i t ten  f o r  spec i f ic  i n i t i a l  and f i n a l  s t a t e s .  Usually 

the f i n a l  s t a t e  of the s c a t t e r i n g  system i s  not observed so we w i l l  sum 

over a l l  possible f i n a l  s t a t e s ,  

i s  the probabi l i ty  t h a t  the s c a t t e r e r  i s  i n i t i a l l y  i n  state 
pnO 

where 

no. becomes a kronecker d e l t a .  
pnO 

Should the i n i t i a l  s t a t e  be prepared 

It i s  obvious t h a t  the statement of energy conservation f o r  the 

problem under consideration i s  I 

where E = k%I2and E are the  energies of neutron and s c a t t e r e r  respec- 
2% - 

t i v e l y .  This condition can be e x p l i c i t l y  incorporated i n t o  the cross 
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section by defining as before 

and noting that 

the latter being merely an integral representation of the Dirac delta- 

function. 

dependent differential scattering cross section 

Now we obtain as an expression for the energy- and angle- 

where on account of the delta function kn, En can be written as kf, Ef; 

this is to avoid confusion and to indicate that the scattered neutron 

energy is an observed quantity. 

moves the factor kn/ki from the summand. 

The above manipulation conveniently re- 

It is noted that the amplitude of the scattered wave contains 

the neutron-nuclear interaction potential V. For sufficiently slow neu- 

trons such that the wavelength is large compared to the range of nuclear 

forces (E C ev) a neutron-nuclear collision can be characterized quite 

accurately as a "localized impact" for which the interaction potential is 

the "Fermi pseudo-potential" , 

(111.10) 

~ 

where aa is the scattering length of the R-th particle. The particular 
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I 

1 

form of the p o t e n t i a l  i s  so  chosen tha t  the use of " F i r s t  Born Approximation" 

w i l l  give the co r rec t  t o t a l  s ca t t e r ing  cross  sec t ion  f o r  a f r e e  atom, 

2 
d = 4naf , where af i s  the experimentally determined free-atom s c a t t e r -  

i ng  length .  The r e l a t i o n  between af and the s c a t t e r i n g  length a used 

i n  (10) i s  seen from the  following argument. I n  an  ana lys i s  of two-particle 

c o l l i s i o n  it i s  na tu ra l  t o  use the r e l a t i v e  coordinates i n  which the  mass 

f a c t o r  appears as a reduced mass p = - m0M . Then we choose the po ten t i a l  
mo+M 

as 

i n  order t o  make the  sca t t e r ing  amplitude independent of mass. Now i f  the 

system contains more than one s c a t t e r e r  there  i s  no advantage i n  def ining 

a center  of mass and i n  t h i s  case we can wr i te  

(mo+M) a f .  With t h i s  with the  bound-atom sca t t e r ing  length defined as a = 

choice of V the  sca t t e red  amplitude takes  the  form 

where K = ki-kf. The summation over n i n  ( 9 )  becomes 

where 

i H s  t - i H s  t 

the  time-independent and time-dependent dynamical var iab les  being designated 
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(4) The time-dependent operator R j ( t )  R Q  and R j ( t )  respect ively.  

s a t i s f i e s  the Heisenberg equation of motion 

\.\ 

Equation ( 9 )  f i n a l l y  becomes 

I 
(111.11) 

where p = (Ef-Ei)/+, . 
s c a t t e r i n g  cross sect ion for subsequent calculat ions.  It  i s  qui te  general  

s ince the macroscopic system has not been specif ied and should be v a l i d  as 

long as the incident  neutron i s  i n  the energy range f o r  which nuclear s c a t t e r -  

i n g i s  i s o t r o p i c  i n  the center of mass coordinate system and independent of 

neutron energy. 

This then i s  a convenient expression of d i f f e r e n t i a l  



I V .  THE EINSTEIN CRYSTAL 

I n  t h i s  sect ion we wish t o  i l l u s t r a t e  some general  aspects of 

neutron s c a t t e r i n g  by c r y s t a l s  without applying the quantum formalism t o  

a complicated model and thus g e t t i n g  involved i n  a g r e a t  d e a l  of calcu- 

l a t i o n s .  It  w i l l  be s u f f i c i e n t  f o r  ou r  purpose t o  l i m i t  our considera- 

t i o n s  t o  a simple descr ipt ion of p a r t i c l e  in te rac t ions  -- the  Eins te in  

c r y s t a l .  For although t h i s  model i s  a severe i d e a l i z a t i o n  of an a c t u a l  

c r y s t a l ,  nevertheless,  as we w i l l  presently see,  it i s  capable of giving 

most of the e s s e n t i a l  fea tures  of neutron s c a t t e r i n g  which can be obtained 

by an ana lys i s  based upon a considerably more r e a l i s t i c  model. 

not  give any detai ls  of the calculat ion leading t o  the s c a t t e r i n g  cross 

sec t ion  since it i s  completely analogous t o  t h a t  for the  more general  

c r y s t a l  model t o  be discussed i n  Section V I I .  Instead we w i l l  examine 

the  r e s u l t  and obtain some l imi t ing  cases which a r e  e s s e n t i a l  t o  the under- 

standing of the s c a t t e r i n g  process. 

We w i l l  

For the Eins te in  c r y s t a l  it i s  assumed t h a t  each p a r t i c l e  (nucleus) 

sees the  same surroundings and therefore executes independent, i so t ropic  

o s c i l l a t i o n s  about an  equilibrium posit ion,  i t s  l a t t i c e  s i t e .  I n  t h i s  

manner it i s  reasonable t o  assume t h a t  a l l  the fundamental v ibra t iona l  f r e -  

quencies a r e  i d e n t i c a l .  We note tha t  i n  the case of polyatomic c r y s t a l  

where mass differences among the d i f f e r e n t  p a r t i c l e s  a r e  la rge  it i s  possi-  

b l e  t h a t  the v i b r a t i o n a l  motion of the l i g h t  atoms can be adequately de- 

sc r ibed  by the above model. Such an example could be the hydrogen atoms 

i n  zirconium hydride. 

Since the quant i ty  of i n t e r e s t  i s  the energy- andangle-dependent 

d i f f e r e n t i a l  cross sect ion we see from the previous sec t ion  t h a t  the 

-21- 
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+ 
ca lcu la t ion  involves f i rs t  obtaining the matrix elements <n \ A R ,  ( t ) A a  In> 

which i n  turn  requires  a determination of the e igens ta tes  

ing ly  we consider a monatomic c rys t a l  containing 

l abe l l ed  by subscr ip t  R. 

Hamiltonian f o r  the system i s  t h a t  of 

t o r s ,  i . e . ,  

In>. Accord- 

N p a r t i c l e s  which a r e  

I n  view of the  adopted dynamical model, the 

3 N  inaependent harmonic o s c i l l a -  

P& Hs = 1 [T + &u;~] , 
R = l  a=1 

( I V . 1 )  

4, 3 
where PQcr - - - - and subscr ipt  0 denotes the  0- th  component 

i aula 

of a -vectoi-* A s  before,  a i s  thz ins tactaneeus disylacement of t.he 

R-th p a r t i c l e  from i t s  equilibrium posi t ion 

Having spec i f ied  the  sca t t e r ing  system we can proceed t o  obtain the  cross 

sec t ion  using equation (111.11). 

per  u n i t  s o l i d  angle and un i t  neutron f i n a l  energy i s  

x , ~  , i . e . ,  g j  = 9 + v~ . 

The d i f f e r e n t i a l  s ca t t e r ing  cross  sec t ion  

(IV.2) 

' csch(v),  v = - &\w coth(V),  P = - , \ I  

2 m  2 m  2koT ' where D = -L 

and ko i s  the Boltzmann constant.  Other quan t i t i e s  appearing i n  t h i s  

equat ion w i l l  be defined i n  the  following discussion. 

I n  Equation (2) we note t h a t  the  d e l t a  functions represent  con- 

d i t i o n s  of energy conservation. The two terms proport ional  t o  6(p) give 
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the e l a s t i c  contribution while terms containing G(p+no) cons t i tu te  

the i n e l a s t i c  port ion of the cross  section, upper and lower signs corre- 

sponding respect ively t o  neutron loss and gain of energy by an amount 

n'hw. 

s ince a n  o s c i l l a t o r  can undergo energy exchange only i n  multiples of i t s  

l e v e l  spacing. 

e l a s t i c  processes f o r  which energy conservation can be s a t i s f i e d ,  and 

that a t  any f i n i t e  temperature neutron energy loss is more probable than 

neutron energy gain.+ 

which is the  semi-claeslcal  result of Section 11. 

- 

The uniform and d i sc re t e  nature  of the energy t r ans fe r  i s  expected 

We observe t h a t  the cross sec t ion  contains a l l  the in -  

The two processes become comparable when koT >> n % o  

I t  is i n t e re s t ing  t o  

note that rieiitrone c & r ~ o t  &,r; afiy energy frm the cryetal a t  T = !! be- 

cause 

f inding the  o e c i l l a t o r  i n  the n-th e lgens ta te ,  vanishes. For large vlb- 

, which can be Interpreted as a measure of the probabi l i ty  of e -nv 

r a t i o n a l  frequency we may use the small argument representat ion of the modi- 

f led Beesel funct ion 

so t h a t  i n  the l i m i t  ,as w becomes i n f i n i t e  a l l  i n e l a s t i c  terms vanish. 

Physical ly  t h i s  corresponds t o  the s i tua t ion  I n  which a l l  p a r t i c l e s  are 

r i g i d l y  f ixed a t  the l a t t i c e  sites so the c r y s t a l  cannot possibly i n t e r -  

change energy with the neutron. Elas t ic  s ca t t e r ing ,  however, Is s t i l l  

allowed. 

The e l a s t i c  contributions t o  the cross sec t ion  are exhibited 

i n  two separate terms. The second term contains the interference f ac to r  

+ Of course, theneikmnrL,:i loo:? energy t o  the c r y s t a l  l a t t i c e  only i f  i t s  
energy i s  grea te r  than the osc i l l a to r  l e v e l  spacing. 
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It i s  seen t h a t  l a t t i c e  symmetries a f f e c t  only the  interference p a r t  of 

the s c a t t e r i n g  and t h a t  interference e f f e c t s  a r e  purely e l a s t i c  processes. 

That the l a t t e r  i s  a d i r e c t  consequence of a c r y s t a l  model which assumes 

uncorrelated p a r t i c l e  motion has already been mentioned i n  Section 11. 

The more r e a l i s t i c  model which we w i l l  describe i n  the next sec t ion  i s  

one i n  which a l l  p a r t i c l e  motions are  correlated,  and f o r  t h a t  case i t  

w i l l  be seen, as i n  Section I1 , tha t  i n e l a s t i c  interference s c a t t e r i n g  i s  

indeed permissible. 

The a t ten tua t ing  exponential f a c t o r  e -D K* i s  the quantum ana- 

logre of the &,)ye- Waller f a  ,',or. A t  high temperature or  small v i t  i s  

seen t h a t  a l l p m c e s ~ ~ s  are  appreciably at tentuated;  the e f f e c t  does not 

vanish e n t i r e l y  a t  

energy. On the other hand, f o r  s u f f i c i e n t l y  small v Ptc2 w i l l  be such 

T = 0, apparently due t o  the o s c i l l a t o r  zero point  

t h a t  we  may use the asymptotic form of the modified Bessel function, 

In(X) 2' ( 2 7 ~ ~ ) -  1/2 ex, the exponential p a r t  of which cancels the Debye- 

Waller f a c t o r .  

K2 ins tead  of la rge  

Obviously t h e  same s i t u a t i o n  holds f o r  the case of la rge  

T, f o r  t h i s  reason we  see t h a t  i n  the region of 

high momentum t r a n s f e r  interference e f f e c t s  w i l l  be negl igible .  

We next consider the sca t te r ing  lengths a1 and a2 which 

appear i n  Equation (2). The necessity f o r  the d i s t i n c t i o n  a r i s e s  from 

the f a c t  t h a t  the s c a t t e r i n g  system may contain a mixture of isotopes f o r  

which the  s c a t t e r i n g  lengths d i f f e r  or  the in te rac t ion  p o t e n t i a l  may be 

spin-dependent .+ For the present it suf f iczs  to mention that a1 and a2 are 

the appropriately averaged sca t te r ing  lengths f o r  those terms with L? = 1' 

-k I so topic  mixture i s  discussed i n  Section V I 1  while sp in  dependence i s  
t r e a t e d  i n  Section V I I I .  
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I 

and ,f2 # ,f2 '  

i n  (2)  containing a1 and a2 may be iden t i f i ed  as d i r e c t  and i n t e r f e r -  

ence sca t t e r ing .  With t h i s  i n t e rp re t a t ion  we observe t h a t  the two pro- 

cesses a re  influenced by independent aspects  of the sca t t e r ing  system, 

the  former being only sens i t i ve  t o  l a t t i c e  dynamics whereas the  l a t t e r  i s  

governed by l a t t i c e  symmetries. I n  the presence of i so topic  mixture and 

respec t ive ly  [see Equation ( I I I . 1 1 ) ] ,  and i n  t h i s  sense terms 

2 2 

spin-dependent i n t e rac t ion  the sca t te r ing  

I+1 2 I a + >  + < -  a l = < -  
2 I+ l  21+1 

2 

1 
a -  > a+ + - a = < -  2 l+L 

2 2I+1 21+1 

lengths  a re  

a2 - > 

2 

where I i s  the  sp in  of the  nucleus and < > denotes i so topic  average. 

Sca t te r ing  lengths a+ and a -  , defined i n  Section V I I ,  a r e  those f o r  

which neutron spin i s  respec t ive ly  p a r a l l e l  and a n t i p a r a l l e l  t o  nuclear 

sp in .  When sp in  e f f e c t s  a r e  absent,  I + 0 and we have a1 = <a2> and 

a = <a> , where a i s  the ordinary sca t t e r ing  length introduced i n  

Equation (111.10). 

2 then a2 = a2 = a . 1 2  

2 

2 2 
2 

Furthermore, i f  the  sca t t e r ing  system i s  monoisotopic 

We a r e  now i n  a pos i t i on  t o  examine the  qua l i t a t ive  behavior 

of t he  sca t t e r ing  cross  sec t ion .  Since among a la rge  number of the  ex- 

perimental  r e s u l t s  the measured quant i ty  i s  independent of s ca t t e r ing  

angle and neutron f i n a l  energy , i t  i s  only necessary t o  discuss  the  depend- 

ence upon neutron i n i t i a l  energy of the t o t a l  cross sec t ion ,  which i s  o b  

t a ined  by in tegra t ing  (2) over a l l  f i n a l  energies  and d i rec t ions  of s ca t -  

t e r i n g .  We note t h a t  the  sca t t e r ing  samples used i n  these experiments a re  

polycrys ta l l ine  so t h a t  the interference term, which depends upon c r y s t a l  
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or ien ta t ion ,  should be averaged over a l l  c r y s t a l  o r ien ta t ions .  However, 

t h i s  aspect i s  not important f o r  the discussion i n  t h i s  sect ion and w i l l  

be t r e a t e d  i n  Section V I I .  L e t  us therefore consider the s c a t t e r i n g  

cross sect ion f o r  a given incident  neutron energy which can be measured, 

say, by a transmission experiment i n  which we w i l l  neglect sp in  and isotope 

e f f e c t s .  

For very low-energy neutrons (Ei 5, ,001 ev)  it i s  seen t h a t  the 

model pred ic t s  no e l a s t i c  processes. This i s  because I o ( x )  i s  e s s e n t i a l l y  

uni ty  which enables the canceU.ation of d i r e c t  scat ter ing,  and the neutron 

wavelength i s  s u f f i c i e n t l y  long t h a t  the  Bragg interference condition can- 

not  be s a t i s f i e d  a t  any s c a t t e r i n g  angie. 

cannot lose energy; the only permissible i n e l a s t i c  process, therefore ,  i s  

Also, i i i  k h l a  region n e u t r m s  

t h a t  i n  which neutrons gain energy and one can readi ly  show t h a t  the cross 

sec t ion  var ies  as Ei and increases with temperature. A s  the i n c i -  

dent neutron energy i s  ra i sed  e l a s t i c  processes begin t o  contr ibute;  a 

- 112 

s i g n i f i c a n t  increase occurs when the Bragg condition which allows the long- 

e s t  wavelength i s  j u s t  s a t i s f i e d .  

ference t e r m  begins t o  be at tentuated by the Debye-Waller f a c t o r .  

the  cross  sec t ion  w i l l  continue t o  exhib i t  sharp jumps as addi t iona l  s e t s  

A t  higher incident  energies the i n t e r -  

While 

of c r y s t a l  planes give r i s e  t o  interference s c a t t e r i n g  the o v e r a l l  oscil- 

l a t o r y  behavior i s  damped. For the high-energy neutrons (Ei$ev) we can, 

therefore ,  expect no contr ibut ion from interference sca t te r ing ;  moreover, 

i n  t h i s  region one can neglect l a t t i c e  binding and thermal e f f e c t s  and 

t r e a t  the s c a t t e r e r  as a f r e e  p a r t i c l e .  The dominant i n e l a s t i c  process 

here i s  t h a t  i n  which neutrons loose energy s ince neutron energy gain be- 

comes negl igible  because of the factor  e with v l a rge .  We obtain -V 
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2 the  l imi t ing  r e s u l t  f o r  high energies , 
are i l l u s t r a t e d  i n  Figure 3 which i s  i n  general  agreement w i t h  observa- 

CJ = 4naf . The above remarks 

t ions f o r  such s c a t t e r e r s  as graphite,  beryllium, and lead. ( 5 )  

we mention t h a t  beryllium, on account of i t s  sharp Bragg cutoff and a 

lgw-energy cross sec t ion ,  which c a n b e  made even smaller upon cooling 

the  materia1,has been used as a f i l t e r  i n  experiments requir ing very low- 

F ina l ly  

energy neutrons. ( 6 )  

W e  have j u s t  shown t h a t  the Einstein c r y s t a l  can be used t o  

understand c e r t a i n  general  aspects  0f neutron s c a t t e r i n g  and t o  explain 

the behavicr of the t o t a l  scattering cross  taection. 

t h a t  t h i s  s implif ied model cannot be adequate i n  predictiiig i-esil l ta which 

are s e n s i t i v e  t o  8ynaqlical d e t a i l s  of the s c a t t e r i n g  system. With the 

recent  development off slQw-neutron experiments as ‘1,~ ii .port?n_t yes  ?2ri:h 

t o o l  i n  so l id-s ta te  physics i t  is  known t h a t  s c a t t e r i n g  measurements can 

be analyzed t o  y ie ld  valuable information on atomic motions and i n t e r -  

p a r t i c l e  f w c e s .  Obviously, i n  order t o  do t h i s  there  must e x i s t  a dynami- 

c a l  model f o r  the c r y s t a l  which t r e a t s  p a r t i c l e s  dynamics t o  a s u f f i c i e n t l y  

high degree of complexity and which s t i l l  remains a n a l y t i c a l l y  t r a c t a b l e .  

The formulation of such a model w i l l  be considered next.  

It i s  c l e a r ,  however, 
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V .  A DYNAMICAL MODEL FOR CRYSTALS 

As we have seen, t h e  descr ipt ion of neutron in t e rac t ion  with atoms 

or molecules bound i n  a c r y s t a l  depends t o  a l a rge  extent  upon the  energy 

of t h e  neutron r e l a t i v e  t o  t h a t  of t he  atoms i n  the  l a t t i c e .  

energy neutrons t h e  l a t t i c e  binding e f f ec t  can be s a f e l y  neglected i n  

t r e a t i n g  t h e  c o l l i s i o n  process. 

a c t u a l l y  i n t e r a c t s  with an atom w i l l  be s m a l l  s o  t h a t  t h e  atom can be e f -  

f e c t i v e l y  considered as being f r ee ,  and i f  t h e  wavelength of t h e  neutron 

i s  s u f f i c i e n t l y  shor t  t h e  interference e f f e c t s  of t h e  s c a t t e r i n g  from neigh- 

boring atoms w i l l  not be s i g n i f i c a n t .  

ana lys i s  i n  t h i s  region w i l l  not be sens i t i ve  t o  d e t a i l s  of t he  sca t t e r ing  

system and i s  of l i t t l e  i n t e r e s t  i n  our discussion. 

when t h e  neutron energy i s  i n  t h e  region of  .1 ev or l e s s ,  t he  associated 

de Broglie wavelength i s  comparable t o  the interatomic d is tance  f o r  t h e  

l a t t i c e .  

bu t  t h e i r  thermal motions and the  e f f e c t  of l a t t i c e  binding w i l l  a l s o  

have appreciable influence on the  nature of t h e  sca t t e r ing .  

son most s c a t t e r i n g  experiments are performed with very low-energy neutrons 

i n  order  t o  study dynamical d e t a i l s  and inter-atomic forces  i n  c r y s t a l s .  

I n  t h i s  s e c t i o n  we w i l l  develop an appropriate model which w i l l  enable us 

t o  analyze these  measurements. 

ca l ly ,  and l a t e r  quantum analogues can be  obtained for those r e s u l t s  which 

are r e l evan t  t o  cross sect ion ca lcu la t ions .  

For high- 

The i n t e r v a l  of t i m e  i n  which t h e  neutron 

It i s  then t o  be expected t h a t  any 

On t h e  o ther  hand, 

Not only do t h e  s c a t t e r i n g  atoms have t o  be t r e a t e d  c o l l e c t i v e l y  

For t h i s  rea-  

It w i l l  be more i n s t r u c t i v e  t o  proceed c l a s s i  

Consider a general  c r y s t a l  s t ruc tu re  i n  which the  R-th l a t t i c e  

c e l l  i s  loca t ed  by a pos i t i on  vector zj, whose components form a s e t  of 

-29- 
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I 

three in tegers  

Let the n p a r t i c l e s  i n  each l a t t i c e  c e l l  be labeled s, s = 1,2,. . . ,n. 

A s  shown i n  Figure 4, the instantaneous pos i t ion  of the 

the a- th  c e l l  i s  RS which can be wr i t ten  as 

ai appropriate t o  the l a t t i c e  basic  vectors E i i ,  i = l,2,3. 

s - th  p a r t i c l e  i n  

h a  ’ 

where us i s  the instantaneous displacement from the equilibrium pos i t ion  

x; . xs i s  the equilibrium pos i t ion  vector of the s - th  p a r t i c l e  measured 

i n  the c e l l  and i s  therefore  independent of a.  For t h i s  p a r t i c l e  the 

equations of motion a re  

a 

, 2 s  au Ms d (u,) = - - 
dt2  

where w e  use Greek subscr ipt  a t o  denote a component of a vector and U 

represents  the i n t e r p a r t i c l e  po ten t ia l .  Here MS i s  the mass of the s - th  

p a r t i c l e .  I n  the absence of de ta i led  knowledge of U1 the approximation 

conventionally employed i s  t h a t  proposed by Born and Oppenheimer. ( 7 7 8 )  

For our purpose we s h a l l  adopt t h i s  approximation t o  obtain a r e a l i s t i c  

model f o r  the c r y s t a l  which s t i l l  describes the p a r t i c l e  motions as har-  

monic v ibra t ions  about t h e i r  respective equilibrium posi t ions.  Compared 

t o  the 

w i l l  see ,  the addi t iona l  complexity introduced l i e s  i n  the f a c t  t h a t  a 

la rge  number of o s c i l l a t i o n  modes, which w i l l  no longer be uncorrelated,  

a r e  allowed. 

E i n s t e i n  c r y s t a l  the nature of the motions i s  the same, bu t ,  as we 

The Born-Oppenheimer method, when applied t o  the c r y s t a l ,  essen- 

t i a l l y  cons is t s  of separating the Schrodinger equation f o r  the system i n t o  
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two parts, one describing the electronic  motion and the other  the nuclear 

motion. 

a c t u a l l y  the eigenvalue of the e lec t ronic  problem and i n  the harmonic ap- 

proximation can be wr i t ten  as 

It can be shown' t h a t  the e f fec t ive  poten t ia l  between nuclei  i s  

where the summation extends over a l l  c e l l s ,  p a r t i c l e s  and components, and 

?&There s ih sc r ip t  n means t h a t  the second-order der ivat ive i s  t o  be evaluated 

a t  the equilibrium pos i t ions .  ++ Different ia t ing ( 3 )  , we g e t  

The equations of motion now become 

where U s s t  aalcm' 
p a r t i c l e  (R,s) 

d i r e c t i o n .  On 

only of vector 

can be in te rpre ted  as the Cr-th component of the force on 

due t o  a unit displacement of p a r t i c l e  (R ' , s l )  i n  the 0'- 

account of l a t t i c e  per iodici ty ,  t h i s  force i s  a funct ion 

displacement and therefore can only depend upon the r e l a t i v e  

+ Readers not familiar with t h i s  par t icu lar  aspect w i l l  f i n d  a thorough 
discussion i n  Reference 8, Chap. V.  

++The same r e s u l t  i s  obtained i f  
s e r i e s  i n  which only the f i r s t  two terms a r e  re ta ined  and noting t h a t  
the f i r s t  term represents  the a - t h  component force on the p a r t i c l e  
(R,s) i n  i t s  equilibrium pos i t ion  and therefore  vanishes. 

a U / a u ~  i s  simply expanded i n  a Taylor 
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c e l l  index J - R ’ ,  

- us s ‘ uss ‘ - aa’m’ R - R ’ m ’  ’ 

Equation ( 5 )  represents  a system of simultaneous, l i n e a r  d i f f e r -  

e n t i a l  equations and the s e t  i s  i n f i n i t e  unless the  c e l l  indices  are r e -  

s t r i c t e d .  

of c e l l s ,  no matter how l a r g e ,  w i l l  always be f i n i t e . +  

were t o  contain more and more p a r t i c l e s  then the system approaches a continuum 

i n  the l i m i t  and the so lu t ion  t o  the equation of motion should have the form 

of a so lu t ion  t o  the wave equation, a t ravel ing wave with i n f i n i t e  number of 

degrees of freedom. 

c r e t e , t h e  solut ion must contain the same number of degrees of freedom as the 

physical system. 

Since we are i n t e r e s t e d  i n  actual  macroscopic c r y s t a l s  the number 

If such a c r y s t a l  

On the other hand, s o  long as the  system remains d i s -  

Accordingly, ve seek a solut ion of the  form 

- 1/2 s i (2lrk-x~-wt) S 
gale us (t) = (Ms) ,ea (v.7) 

The usual  o s c i l l a t o r y  time dependence i s  chosen; the dependence of the c i r -  

cu la r  frequency w and i t s  allowed values have y e t  t o  be determined. The 

appearance of the f a c t o r  exp(2fiik.x;) i s  perhaps not  obvious. While t h i s  

i s  c lose ly  analogous with the  wave solution f o r  an  e l a s t i c  continun there  

e x i s t s  a somewhat subt le  connection with the periodic property of the c r y s t a l  

l a t t i c e  and a spec i f ic  boundary condition. For f ixed  s and Q the d i s -  

placement i s  a periodic function of the c e l l  loca t ion  xa. Moreover, i f  the 

propagation vector 

i s  seen t h a t  the motions of p a r t i c l e s  occupying equivalent posi t ions i n  c e l l s  

k, unspecified as y e t ,  i s  appropriately res t r ic ted ,  it 

+ The use of ( 5 )  t o  describe a f i n i t e  c r y s t a l  i m p l i c i t l y  assumes t h a t  sur- 
face  e f f e c t s  a r e  negl ig ib le .  
i n f i n i t e  medium, 

This is because ( 3 )  w a s  derived f o r  an  
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I 

c e r t a i n  dis tance a p a r t  a r e  described by  the same solut ion.  Therefore the 

range of k can be so  defined tha t  the so lu t ion  s a t i s f i e s  the boundary con- 

d i t i o n  requir ing p a r t i c l e s  on opposing surfaces of the c r y s t a l  t o  move i n  

unison. This boundary condition, which i s  a c t u a l l y  expressed through the 

condition on k ,  

within the c r y s t a l  by a superposit ion of a f i n i t e  number of t rave l ing  waves 

as given by (7) .+ 
proper number of v ibra t ion  modes. These remarks w i l l  be made more e x p l i c i t  

a f t e r  we discuss  the determinations of frequency 0) and coeff ic ients  g0 . 

\ \  

does not prevent the descr ipt ion of the p a r t i c l e  motions 
v"\ 

A t  the same time, the so lu t ion  is  seen t o  e x h i b i t  the 

S 

Inser t ing  solut ion (7) i n t o  the equations of motion we obtain 

where 

would not be independent of the 

c e l l  index. Equation (8) now represents 3n l i n e a r  homogeneous equations 

i n  the 3 n unknowns 

given &, CkWI " '  i s  a 3n x 3 n matrix i f  ( s , a )  and (s' ,Q') a r e  con- 

s idered as s ingle  indices .  

only i f  the secular  determinant vanishes, i. e . ,  

Observe t h a t  without property ( 6 ) ,  p s  kml ' 

since s = 1,2 ,..., n and 0 = l,2,3. For a 
"0) 

v. 

O f  course, (8) w i l l  have non- t r iv ia l  solut ions 

+ The r e s t r i c t e d  motion of the surface p a r t i c l e s  i s  of no consequence s ince 
we have cons is ten t ly  neglected surface e f f e c t s .  One should be aware tha t  
these implications r e s u l t  d i r e c t l y  from the form of so lu t ion  chosen and 
the r e l a t e d  boundary condition which, together with the i n t e r p a r t i c l e  p e  
t e n t i a l ,  represent the c r y s t a l  model we have adopted. Solution (7) with 
boundary condition, a t  b e s t ,  describes only approximately the dynamical 
behavior of p a r t i c l e s  i n  an a c t u a l  c rys ta l .  
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I 

2 This i s  a 

t o  have only pos i t ive  frequencies then both k and -?$, are admissible.  

Once the frequencies are known, they may be used i n  Equation (8) t o  obtain 

the coef f ic ien ts  gk . 
r e a l  progressive wave corresponding t o  each of the 3 n frequencies.  However, 

not j u s t  any value of 

d i r e c t  consequence of the assumed l a t t i c e  per iodic i ty  property is  seen i n  

3 n - degree equation i n  co , and i f  the solut ions a r e  r e s t r i c t e d  

\ \  

According t o  (7) f o r  a given & there  e x i s t s  a 

& w i l l  lead t o  unique so lu t ions .  That t h i s  i s  a 

the following argument. 

The solut ion (7 j  depends upon c e i i  index 2 oliiji thro-eh the phsse 

f a c t o r  e x p ( 2 ~ f i k . z ~ ) .  

r e l a t e d  t o  the l a t t i c e  bas ic  vectors Ai by 

We can define a s e t  of rec iproca l  bas ic  vectors 2.: 
W. 

, i , j , k  i n  cycl ic  order,  bi - a j  x?k - 
va 

such t h a t  

,,, bi * a j  = B i j  

(v.10) 

(v.11) 

with va = ! a 1 . a 2 ~ ~ 3 !  . 
be regarded as a s e t  of contravariant vectors while 

sponding covariant se t .  Using these reciprocal  bas ic  vectors w e  def ine a 

rec iproca l  l a t t i c e  i n  which a l a t t i c e  vector i s  

The superscr ipt  serves t o  ind ica te  t h a t  2 may 

Ei w i l l  be the corre- 

(v.12) 

where yi a r e  integers .  According t o  (12) ,  the s c a l a r  product between a 

r e c i p r o c a l  l a t t i c e  vector and a l a t t i c e  vector 3 i s  always an  integer  
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equal t o  

gation vector k ,  which when expressed i n  reciprocal  l a t t i c e  i s  not nee- 

yi,li. Consequently the  phase f a c t o r  i s  unchanged i f  the  propa- 
i 

.yI 

e s s a r i l y  a reciprocal  l a t t i c e  vector, were changed by an amount equal t o  

any reciprocal  l a t t i c e  vector Y,, Furthermore, given a reciprocal  l a t t i c e  

c e l l ,  a reciprocal  l a t t i c e  vector can always be chosen t o  connect any point  

outside t h e  c e l l  t o  a point inside. This implies t h a t  corresponding t o  

every value of k within the  reciprocal l a t t i c e  c e l l  there  e x i s t s  a unique 

phase (and therefore  unique solution) and corresponding t o  any value of 

k outside t h e  c e l l  t h e r e  e x i s t s  no addi t ional  phase which i s  d i s t i n c t .  

Hence, a l l  t h e  unique solut ions a r e  re ta ined i f  k i s  r e s t r i c t e d  t o  a 

,-< 

:i , 

.h> 

The foregoing consideration of uniqueness of the solut ions leads  

t o  a r e s t r i c t i o n  of k. However, t h i s  does not completely specify k 
.>,\ h i \  

since t h e r e  e x i s t  a countably i n f i n i t e  number of k values within the  r e -  
\,\\\ 

ciprocal  l a t t i c e  c e l l .  This s i tua t ion  i s  t o  be expected s ince t h e  physi- 

c a l  boundary of t h e  c r y s t a l  has not yet been specif ied.  Let us consider 

a c r y s t a l  which contains N i  number of c e l l s  along t h e  l a t t i c e  basic  vec- 

t o r  gi. 

given by (7)  where 

For t h i s  case t h e  solution t o  t h e  equation of motion i s  t h a t  

,li = l,?, ..., N i - 1 .  The boundary condition t h a t  par- 

t i c l e s  on opposing surfaces of t h e  c r y s t a l  move i n  i d e n t i c a l  manner re -  

S S quires+ uRa = uaOa , with ,XJ  - xj0 = c E i N i a i ,  ~i = 0,l. This implies 
i 

t h a t  

or kiNiai = integer ,  where k i  a r e  components of k along t h e  u n i t  

i- This boundary condition i s  known as t h e  Born-Von Karman boundary condi- 
t i o n  o r i g i n a l l y  proposed by Born and independently by Von Karman. 
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i 

vectors a,i/ai . It w i l l  be more convenient t o  express & i n  terms of 

rec iproca l  bas ic  vectors ,  i . e . ,  ,.& = &(v) = viLi. 
a r e  not in tegers  unless & ( v )  i s  a l s o  a rec iproca l  l a t t i c e  vector Y s o  

t h a t  v i  = yi. Since k i s  r e s t r i c t e d  t o  a rec iproca l  l a t t i c e  c e l l  v i ,  
which can be taken t o  be always posi t ive,  can be utmost uni ty .  

a r y  condition (13) now implies 

We observe t h a t  vi 

CM 

w 

The bound- 

(V.14) 

3 
i =1 

Clearly there  a r e  N i  allowed values of T i  , the N = il Ni values 

of & w i l l  be cal led the N p e r m i t t e d  wave numbers. Therefore it i s  seen 

tinat tine assumed soiutioii  ( 7 )  satisfies both the x~ iquemss  requiremefit 2nd 

the  boundary condition through a s ingle  condition (14) on &. 
It i s  imperative t h a t  the number of modes of v ibra t ion  i n  a f i n i t e  

c r y s t a l  be equal t o  the  number of degrees of freedom. The c r y s t a l  which we 

have j u s t  considered contains N l a t t i c e  c e l l s  with n p a r t i c l e s  i n  each 

c e l l ,  then the number of degrees of freedom i s  3nN. On the other hand, 

i n  the model there  are N permitted values of k and f o r  each k the 

secular  determinant ( 9 )  y i e l d s  

- \M 

3n frequencies s o  the number of vibrat ion 

modes i s  a l s o  3nN. 

l a t t i c e  c e l l  i s  j u s t  

Furthermore we note t h a t  the volume of the reciprocal  

where va i s  the volume of the l a t t i c e  c e l l .  This ind ica tes  t h a t  the per- 

mitted wave numbers a r e  uniformly d i s t r i b u t e d  i n  the rec iproca l  l a t t i c e  

with a dens i ty  equal t o  

k - 
Nva = V, the  volume of the c r y s t a l .  



VI. NORMAL COORDINATES+ 

The discussion i n  the  previous sec t ion  shows t h a t  t he  use of har-  

monic approximation and the  periodic boundary condition leads  t o  a Hamiltonian 

for a f i n i t e  c r y s t a l  of the form 

% a  where the f i r s t  term i s  the usual  kinetic-energy term with T"aa = - - . 
i au& 

Since the  p a r t i c l e  displacements i n  the p o t e n t i a l  are coupled, it becomes 

des i rab le  t o  seek a new set  of independent coordinates i n  terms of which 

the  Hamiltonian appears as a sum of terms, eacn invoiving oniy one of tiiese 

coordinates .  When these coordinates are  properly chosen, the transformed 

Hamiltonian w i l l  exh ib i t  the  same form as t h a t  f o r  

l a t o r s  and any subsequent ana lys i s  w i l l  be  considerably s impl i f ied .  

3nN independent o s c i l -  

Such 

a s e t  of coordinates i s  known as the  s e t  of normal coordinates. 

It  w i l l  be convenient t o  eliminate the presence of the p a r t i c l e  

mass by introducing reduced quan t i t i e s .  Thus 

( V I  .2) 

( V I  -4) 

+ P a r t  of t h i s  s ec t ion  follows the treatment of Born and Huang,Reference 8. 
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-39- 

where - - - -  h a  . Before a c t u a l l y  introducing the normal %~CY i aws 
aa 

coordinate transformations we w i l l  f i r s t  examine c e r t a i n  usefu l  propert ies  

of the so lu t ion  ( V . 7 ) .  Consider the function 

Since N i v i  = hi are in tegers ,  A(&) vanishes everywhere except a t  the 

rec iproca l  l a t t i c e  points  where the denominators a l s o  vanish. 

say,  qi w i l l  only be in tegers  when &(v)  becomes a rec iproca l  l a t t i c e  

That i s  t o  

vector .  Therefore, 

1 all v i  are in tegers  

0 vi not a l l  in tegers  
A(&) = (  

Now construct  the funct ion 

(VI .6) 

which, according t o  ( 6 ) ,  w i l l  vanish unless the argument of A i s  a recip-  

r o c a l  l a t t i c e  vector ,  With the r e s t r i c t i o n  on & given by ( V . 1 4 )  the  non- 

vanishing of A requires  

-k(V') WI + m k(7 )  = yr\ k(7-7 ' )  = k(0) - 
Hence we obtain the orthonormal property 
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where & and denote two permittted wave numbers. By a similar argument 

the closure property of (10) is  obtained, 

(VI. 8) 

where 1 and 1' are two l a t t i c e  c e l l  indices. 

The transformation t o  normal coordinates can now be derived. F i r s t  

expand the reduced displacements 

with inveree 

Tihe f a c t  that the dirrpfscesrente must be real implies 

% fkQ - ' 

( V I  . lo) 

( V I  1.11) 

where 

Physically, expansion (9) describes the real displacement i n  terms of a 

s e r i e s  of N traveling waves with complex coefficients as amplitudes. 
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This uni tary transformation reduces the p o t e n t i a l  t o  a 

ss ' forms, each characterized by a 3n x 3n matrix Dkm1 

For a given 2 there  e x i s t  3n s e t s  of eigenvectors 

(+J, j = 1,2, . . . , 3  n, 

wz 

2 
s a t i s f y i n g  

where the eigenvectors form a complete and orthonormal 

+ Furthermore, 

S* - S 
e k j ( a )  *ur - e-k j (a )  m 

s e r i e s  of N complex 

which i s  Hermitian.+ 

eqo! and eigenvalues S 

w 

( V I .  12) 

s e t ,  

( V I  .14) 

It i s  i n t e r e s t i n g  t o  note the s i m i l a r i t y  between Equations ( V . 8 )  and (12). 

I n  f a c t  DE&l i s  completely equivalent t o  the matrix 

a difference i n  the phase f a c t o r .  

, d i f f e r  from e' by a cam- t o r s  g& , more e x p l i c i t l y  wr i t ten  as g i ja  

pensating phase f a c t o r  exp( -2ni&-$). 

C s s '  except for k m '  
% vr\ 

Accordingly, the corresponding eigenvec- 

kja uh 

Since the two eigenvalues a r e  the 

same for a given k,, the choice of phase f a c t o r s  i s  a r b i t r a r y .  

A s  noted earlier the need for  normal coordinates a r i s e s  from the 

f a c t  t h a t  i n  Equation (1) the p a r t i c l e  displacements a r e  dynamically coupled 

through the  three indices  r e f e r r i n g  t o  l a t t i c e  c e l l ,  pos i t ion  i n  the c e l l ,  

and d i r e c t i o n  of displacement. Since the normal coordinates w i l l  not be 

coupled i n  the  Hamiltonian, they must not depend on a ,  s ,  and a. The 

~ 

i- Proof given i n  Appendix A. 
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transformation (11) has eliminated the coupling through c e l l  index 

introducing the dependence on 5.  
one which w i l l  transform the dependence on s ,  CX t o  a dependence on other  

indices .  

we wri te  

,t by 

I t  follows t h a t  the next s t e p  should be 

This can be achieved by using the eigenvectors j u s t  found. So 

S 
w s = C e  Q ka! i - k j a  ,V. k j  ' 

vr\ 

with inverse by v i r t u e  of (13) 

(VI. 16) 

Or? accnimt, nf  the f a c t  that .  (a,a) i n  the  dynamical matrix D;&I can be 

taken as a s ingle  index, only a s ingle  new index 

quired i n  the transformation. 

b... 

j ,  j=1,2, . . . ,3 n, i s  r e -  

Now the Hamiltonian (l), when expressed i n  terms of the coordinates 

Q$j, takes the form 

where 

We w i l l  regard the set  of coordinates & k j  as the 3nN complex normal co- 

ordinates  r e l a t e d  t o  the a c t u a l  p a r t i c l e  coordinate by the expression 
w 

(VI. 18) 
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I n  the study of neutron in te rac t ion  with c r y s t a l  two d i f f e r e n t  

kinds of normal coordinates can be used. We w i l l  next show how they may 

be derived from the coordinztes Qk;) just obtained. It  w i l l  be seen t h a t  

the f i r s t  kind of normal coordinate corresponds t o  a combination of the 

complex waves described by Qkj and i t s  complex conjugate Qij 
two r e a l  standing waves while the second kind of normal coordinates i n -  

t o  give 
\% 

volves a reformulation of the problem i n  which the coordinate and i ts  

canonical conjugate momentum are expressed i n  terms of quantum mechanical 

operators known as "creation" and "annihilation" operators.  

the l a t t e r  type of coordinates i s  re la ted  t o  t rave l ing  waves moving i n  

Physically, 

opposite d i rec t ions .  (9) 

A.  Standing Waves 

Observe t h a t  f o r  & =  0, QZj - - Qoj so t h a t  these coordinates 

can be used d i r e c t l y  as r e a l  normal coordinates. For $.. # 0 the permitted 

wave numbers can be divided i n t o  two groups by passing an a r b i t r a r y  plane 

through the  or ig in  i n  rec iproca l  space. Therefore, t o  every allowable & 
on the "posi t ive"  s i d e  there  corresponds a on the opposite s ide of the 

plane.  Since the Hamiltonian i s  symmetric i n  & it i s  then only necessary 

t o  sum over half  the rec iproca l  c e l l .  

z i t  i = 1,2 ,  

-2 

1 
Let Qkj = E (21 + i z 2 ) ,  where 

a r e  two r e a l ,  independent coordinates and we have suppressed 
.+, 

the  ind ices  k and j .  Under t h i s  addi t ional  transformation the Hamiltonian 

(17) becomes 

LV\ 

with p i  = ' - - a 
i a z i  

which i s  the familiar form of a system of 3nN uncoupled 



-44 - 

harmonic oscillators. Each of the 3N/2 frequencies is shared by a z 1  

oscillator and a 22 oscillator. In terms of these real normal coordi- 

nates the particle displacement has the form 

In the special case of monatomic crystal, the particle displacement can be 

written as 

where Akja is the QI-th component of the phonon polarization vector &j. 

The normal coordinates in this form have been used in the early investiga- 

tion of neutron scattering by crystals. (l) 

u1 .. 

B. "Creation" and "Annihilation" Operators 

Consider the Hamiltonian given by (17), 

H = 1 (PhPh * + U~Q:QJ , (VI .18) 

where the indices k and j have been replaced b.y X for convenience and 
ur, 

Coordinate Qx and conjugate momentum ph are operators P A = - - .  & a  
i &, 

which satisfy the commutation rules, 
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I n  order t o  examine the time dependence of Qx and px, we next consider 

the equations of motion, (10) 

i C \  dph = [ph,H] = -ilG\m 2 *  QA 9 

d t  

where we have used the f a c t  t h a t  summation over 

and negative wave numbers i n  evaluating the commutators. The equations a r e  

then e a s i l y  solved t o  give 

+- includes both pos i t ive  

- i m h t  i q t  Qx = a l e  + ble ? 

* * . Corresponding expressions e x i s t  f o r  Qh and px . Since 
dQ; 

with ph = - 
d t  * 

Qx = Q-1, where the s ign of h corresponds t o  t h a t  of 5 while index j 

is always pos i t ive ,  the r e l a t i o n  between the time-independent operators 

These operators can be wr i t ten  i n  terms of Qx and px , 

and they s a t i s f y  the commutation r e l a t i o n  

6hh' ' [ah,aht 1 = - 
2% 

* 4 

2cox lI2 -iqt 
We can therefore  define new operators,  = (x) a l e  so t h a t  

the  Hamiltonian (18) becomes 

(VI .20) 
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I The o r ig ina l  p a r t i c l e  displacement i s  now expressed as 

( V I .  21) 

( V I  .22) 

! 
l 

~ 

I n  a r r iv ing  a t  (20) and (22) one m u s t  keep i n  mind t h a t  

and negative becausc of the summation over &. Equation (22) i s  commonly 

used t o  describe p a r t i c l e  motions i n  s tudies  of neutron in te rac t ion  wi th  

c r y s t a l s .  (3 )  

normal coordinates for the  system, and upon transformation become 

A can be pos i t ive  

I 

For the E lns t e in  c rys t a l  the p a r t i c l e  displacements a re  t h e  
I 
I 

I 

(VI. 22a) 

h-here it i s  t o  be expected thatus (t) i s  independent of a. aa * 
We proceed to  show that f x  and {A operating on the wave func- 

I 
i 

t i o n  of the c r y s t a l  w i l l  r e s u l t  i n  the emission and absorption of a quantum 
I of sound rad ia t ion  (energy q?), known as a phcmon, and are therefore  the 

"creation" and "annihi la t ion" operators.  

. form of a Hamiltonian for 

the energy of the A-th o s c i l l a t o r  i n  the n-th e igens ta te  i s  

I t  is noted tha t  (18) i s  i n  the 

3nN uncoupled harmonic o s c i l l a t o r s ,  therefore  

I 

where 



I 
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and Inx> denotes the wave function af the  A-.th o s c i l l a t o r  i n  the n-th 

e igens ta te .  

regarded as the number of A-phonons i n  the system. 

(21), w e  have 

nA i s  the quantum number of the o s c i l l a t o r  and can a l s o  be 

According t o  (20) and 

5,) Operate the first equation on 

Equation (25) shows t h a t  C In-> i s  proportional t o  an eigenfunction of Hh. 

Let the proport ional i ty  constant be An, a constant depending upon n, then 

we can w r i t e  

A X  

CAInA> = A n / n A - b  . 

Simi lar ly  it can be shown t h a t  

where Bn i s  another constant depending upon n. 

To determine An and B, we simply observe t h a t  

Comparing the Equations (23) and (24) it i s  seen t h a t  An = J n x  and 
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V I I .  SCATTERING OF NEUTRONS BY A MONATOMIC CRYSTAL 

Scat ter ing by a monatomic c rys t a l  i s  perhaps the simplest  case 

i n  which a l l  the e s sen ta l  aspec ts  of the dependence of cross sect ion upon 

the  s t ruc ture  and dynamicalbehavior of the  sca t t e r ing  sys'tem can be i n -  

vest igated.  The r e s u l t s  derived i n  t h i s  sec t ion  can be generalized i n  a 

straightforward manner t o  the  polyatomic case by the use of s t ruc ture  fac-  

t o r .  We now use the c r y s t a l  model which has j u s t  been developed but  w i l l  

s implify it t o  the case of only one pa r t i c l e  occupying each c e l l .  

d i f f e r e n t i a l  cross sec t ion  will be calculated using the formalism developed 

e a r l i e r  and in t e rp re t a t ions  can then be made whfch a r e  bas ic  t o  a general  

unGerstanding of neutron in te rac t ions  with c r y s t a l s .  

The 

We f i r s t  coneider the factor  i n  Equation (III.11), 

( V I I . 1 )  

(VII.2) 

Here i s  used t o  denote the average over a l l  possible i n i t i a l  s t a t e s  

n (previously no) of the c r y s t a l .  The c r y s t a l  i s  taken t o  be i n  thermo- 

dynamic equilibrium with the surroundings so t h i s  average i s  of ten ca l led  

the  thermal average. 

mately,descr ibe the dynamical behavior of the N-particle c r y s t a l  by t h a t  of 

a system of 3 N  independent harmonic o s c i l l a t o r s .  IC w i l l  be seen t h a t  

use of the  "creation" and "annihilation" operators g rea t ly  s impl i f ies  the 

ca l cu la t ion  and t h a t  the e x p l i c i t  form of !n> i s  never needed. The i n -  

stantaneous pos i t ion  of the p a r t i c l e  i n  

< >T 

I n  terms of the normal m o d e  ana lys i s  we can approxi- 

1-th c e l l  can be wr i t ten  as 

-40- 
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where the decomposition i n t o  normal coordinates rh  i s  wr i t ten  formally. 

Whenever e x p l i c i t  f o r m  are required,  rx are the "annihi la t ion" and 

"creation" operators,  i . e , ,  

w i t h  

1 /2  2rcik-xj -ax z =(-> 2MNq ,Ahe I 

(VII.4) 

where it is understood t h a t  index X represents  one of the  N permitted 

wave numbers and one of the three d i rec t ions  of polar iza t ion .  Thus 

- A (&) i s  the j - t h  un i t  polar izat ion vector appropriate t o  t h a t  os- Ax - 4  
c i l l a t o r  whose propagation vector i s  

formalism 51, ,$he equiLibrPum posi t ion of the a - th  par t ic le ,  i s  not a 

dynamical variable and tha t  the normal coordinates can appear as t i m e -  

independent operators  rA ( (CX f x )  i n  the SchrLdinger p ic ture ,  o r  as 

time-dependent operators r ( t )  [or cl(t) ] i n  the Heisenberg p ic ture .  

A s  we have shown, the difference between cx and c x ( t )  i s  the time f ac to r  

exp(-icuht). 

been given e a r l f e r .  

5. We note that i n  the quantum 

The commutation rule and eigenvalues of these operators have 

The operator (2) now takes the form 
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since the normal coordinates a r e  independent and therefore  commute. Next 

we observe t h a t  f o r  any two operators A and B which commute w i t h  the i r  

commutator [ A , B ]  there  e x i s t s  the identity' 

1 A B A+B + 2 [ A , B ]  
e e = e  

We make use of t h i s  f a c t  t o  wri te  

The thermal average 

A 

(1) becomes 

where the i n i t i a l  c r y s t a l  eigenfunction 10 has been wr i t ten  e x p l i c i t y  

as a product of o s c i l l a t o r  eigenfunctions Inh> , h = 1,2, . . . , 3  N, and 

(VII .6) 

= e  

the  commutator here being j u s t  a number. It is  noted t h a t  we have wr i t ten  

Pn, 

product of Pn 's , where Pnh i s  the probabi l i ty  of f inding the X-th 

o s c i l l a t o r  i n i t i a l l y  i n  state n. Again t h i s  i s  a d i r e c t  consequence of 

t h e  probabi l i ty  of f inding t h e  c r y s t a l  i n i t i a l l y  i n  s t a t e  n, as a 

A 

the normal mode analysis  and the f a c t  that the c r y s t a l  i s  i n  thermodynamic 

+ Proof given i n  Appendix B.  
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equilibrium. The dens i ty  matrix is  diagonal'and i s  e x p l i c i t l y  

-2nv -2% ',, 
= e  '(1 - e ' ?  

where vA has been defined i n  Section I V .  It i s  seen t h a t  phonons obey 

Bose-Einstein s t a t i s t i c s .  

I n  order t o  calculate  the thermal average of Xx we make use 
J E I  

of the coro l la ry  t o  Block's 

where Q i s  a multiple, of ,  

theorem (4 )  

7 (VII .8) 

or some l i n e a r  combination of, commuting 

o s c i l l a t o r  coordinates and t h e i r  conjugate momenta. Then 

The thermal average of the time -dependent and time-independent normal co- 

c rd ina tes  can be r e a d i l y  obtained, 

2 2 <rJt).>T = <rpJ  = 2<npT + 1 j 

where 
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I 

Equation (9) becomes 
'3 

where 

(VI1 .lo) 

and we have rearranged the r e s u l t  by using the generating function of the 

modified Bessel function of first kind, 

We can now exhib i t  the energy- and angle -dependent d i f f e r e n t i a l  

s c a t t e r i n g  cross sec t ion  f o r  a monatomic s ingle  c r y s t a l  of 

p a r t i c l e s  as 

N spinless  

( V I I . 1 1 )  

Since the present  c r y s t a l  m o d e l  assumes harmonic v ibra t ions  of the p a r t i c l e s  

then i t  should be possible t o  reduce the above r e s u l t  t o  t h a t  f o r  the 
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% '  - .- -:cL c r y s t a l .  The necessary spec ia l iza t ion  required i s  indicated from 

a. comparison of Equations (IV.22) and (IV.22a). Hence we obtain for the 

monatomic case:, 

where D,  P, v have been defined i n  Section I V .  Note t h a t  the  reduction 

appl ies  only f o r  al=a. For $ ' + a  the thermal average i s  time-independent 

be cause 

where 

and Inl> i s  the  e igens ta te  of the  pa r t i c l e  i n  the  1-th c e l l .  The corre-  

sponding d i f f e r e n t i a l  s ca t t e r ing  cross sec t ion  f o r  the Eiensteln c r y s t a l  i s  

We ha-,re :.'.own t h a t  a system of o s c i l l a t o r s  can undergo energy t r a n s i -  

t i ons  only i n  d i s c r e t e  amounts the A-th o s c i l l a t o r  can t r ans fe r  an amount 

equal t o  i n t e g r a l  multiple 

any neutron-crystal  i n t e rac t ion  the  energy gain o r  loss of the neutron can 

be wr i t t en  as 

of i t s  energy l e v e l  spacing %ul, Therefore f o r  

P = nAU1 9 (VII.12) 
x 
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where each in teger  nX can be pos i t ive  o r  negat ive. ,  Accordingly .fie per-  

forrp the  indicated time in t eg ra t ion  to  obtain from Equation (11) 

The energy conservation conditions appears e x p l i c i t l y  as the  d e l t a  funct ion.  

The indicated summation I s  over a l l  possible sets of 

s e t  {mx) each mX i n  the product i s  spec i f ied  by the  set  according t o  X .  

{rnx) and f o r  a given 

I n  an energy measurement the e f f e c t  of the f i n i t e  reso lu t ion  of 

the  instrument i s  e s s e n t i a l l y  t o  integrate the  measured quant i ty  over a small 

intersTal about the energy of the sca t t e red  neutrons.. 

manner the d i f f e r e n t i a l  cross sec t ion  

c (nA-mk)coX = 0. For a given p we note t h a t  the s e t  of in tegers  {nx) x .  
may no t  be unique. This i s  t o  say, there  may e x i s t  d i f f e r e n t  mul t i -osc i l la tor  

e x c i t a t i o n  processes which can r e s u l t  i n  the same ne t  energy exchange. 

When t r ea t ed  i n  t h i s  

a(p,@ ie non-zero only for  

We 

s h a l l ,  however, ignore t h i s  aspect  and assume, f o r  the purpose of subsequent 

d i scuss ion ,  t h a t  each set  {nJ 

t r o n  energy t r a n s f e r  as w r i t t e n  i n  (12) .  

t i f y  the  coe f f i c i en t  of each delta function as the  phys ica l ly  measured 

d p , $  , for  example, 

corresponds uniquely t o  a p a r t i c u l a r  neu- 

Thus it becomes possible  t o  iden- 

( V I 1  .14) 

I n  t h i s  way the  e l a s t i c  as w e l l  as all the i n e l a s t i c  cross  sec t ions  can be 

der ived from Equation (13). 
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. It i s  convenient 
F"X We next examine the s t ructure  f a c t o r  

t o  remove it from the product by writ ing 

( V I 1  .15) 

where y = E - nxs_, q = 2z& and indices J? and a 1  range over a l l  

l a t t i c e  s i t e s  i n  the c r y s t a l .  When the c r y s t a l  contains two or  more i s o -  

topes f o r  which the s c a t t e r i n g  lengths d i f f e r  the summation process e f fec-  

t i v e l y  averages the s c a t t e r i n g  length over a l l  the isotopes present .  We 

can e x h i b i t  the double sum as two partial sums, 

VIC - 

where the prime indica tes  t ha t  terms with a = are t o  be omitted. 

The first sum i n  the separat ion can be in te rpre ted  as representing d i r e c t  

s c a t t e r i n g  e f f e c t s  while the second term involves s c a t t e r i n g  due t o  d i f -  

f e r e n t  p a r t i c l e s  and therefore represents interference e f f e c t s .  For a 

r e l a t i v e l y  simple model it w i l l  be ins t ruc t ive  t o  discuss neutron i n t e r -  

a c t i o n  i n  terms of d i r e c t  and interference sca t te r ings  and show the depend- 

ence of the two e f f e c t s  on d i f fe ren t  physical  aspects of the s c a t t e r i n g  

system. 

c r y s t a l .  To carry out the indicated summation l e t  CA be the f r a c t i o n a l  

concentration of isotope A which has s c a t t e r i n g  length ahr e t c .  Then 

Essent ia l ly  t h i s  was our approach i n  the discussion of the Einstein 
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In  the second sum we have assumed t h a t  the c r y s t a l  i s  completely disordered. 

That i s  t o  say, the existence of an atom of a p a r t i c u l a r  isotope a t  

independent of the type of atom a t  1'. The symbol < 3 i s  used t o  denote 

isotopic  average. We w i l l  express y i n  terms of rec iproca l  l a t t i c e  basic  

vectors so t h a t  

,8 is  

'"-A 

where 7s  and 1' a r e  the respective components, then 

( V I 1  .18) 

3 
where N, i s  the highest  in teger  t h a t  RS can assume, i . e .  TI Ns = N. 

I t  i s  noted t h a t  t h i s  expression w i l l  be small compared t o  i t s  value when 

s =1 

the  denominator vanishee. 

ps = O , + l ,  . . . , 
Since the denominator vanishes f o r  7, = 2nps, 

we only need t o  examine the behavior of (18) i n  the neigh- - 
borhood of these values of y s .  Let 7, = 2r(ps + E , E small, then 

sin2(Nsys/2) sin2(NSc/2) 
% - w 2fiNs6(~) . 

sin2(ys/2) (+>2 

A s  a r e s u l t  we obtain 

2 3 N 

a s =1 
I eiZ*xal = ( ~ x ) ~ N  6(rs-2Ws) . (VII.19) 

Equation (19) shows t h a t  the difference between momentum t ransfer  vector 

K and multiple phonon vector 2 nh$ i s  a vector Y defined in reclpro-  

c a l  l a t t i c e  space by 

w %,. 
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where, as w e  have seen i n  Section I V ,  a c e r t a i n  property of c r y s t a l  s t r u c -  

t u r e  i s  expressed through Y. 

appears only i n  the above d e l t a  functions. 

functions express the well-known Bragg condition o r i g i n a l l y  proposed f o r  

X-ray interference e f f e c t s .  

Thus the influence of l a t t i c e  geometry 
v"8 

+ I n  e l a s t i c  s c a t t e r i n g  these 

The single c r y s t a l  d i f f e r e n t i a l  s c a t t e r i n g  cross sec t ion  can now 

be wr i t ten  ae 

(VII.20) 

2 2 2 2  2 
aI = <a > - <a> , ac = <e , where and the d e l t a  function i s  expressed 

i n  Cartesian components.++ The p a r t  of cross sec t ion  containing a: is 

ca l led  incoherent while t h a t  containing a: i s  ca l led  coherent.+++ We 

observe t h a t  the source of incoherence i s  the existence of i so topic  mix- 

t u r e .  If the c r y s t a l  were monoisotopic 

incoherence due t o  nuclear spin e f fec ts  

+ 

++ 

+++ 

It  i s  important t o  keep i n  mind the 

2 then aI = 0. I n  the next sect ion 

w i l l  be discussed. 

f a c t  t h a t  use of the d e l t a  functions 
t o  represent  mathematically a sharply peaked physical behavior i s  made 
f o r  convenience. 

Since the d e l t a  function i n  question i s  defined with respec t  t o  a three-  
dimensional i n t e g r a l  the Jacobian involved i n  the transformation i s  j u s t  
the  r a t i o  of u n i t  c e l l  volumes i n  the two spaces. 

It i s  important t o  note t h a t  incoherent and coherent s c a t t e r i n g s  are 
not  t o  be confused with d i r e c t  and interference s c a t t e r i n g s .  While i n -  
coherent s c a t t e r i n g  does not contain interference e f f e c t s  coherent 
s c a t t e r i n g  does include cer ta in  d i r e c t  s c a t t e r i n g  [see Equation (17) 1. 
The j u s t i f i c a t i o n  f o r  the present convention apparently l i e s  i n  the 
e x p l i c i t  display of isotopic  e f fec ts  (and l a t e r  a l s o  spin e f f e c t s ) .  



-58- 

The general  expression (20) allows exc i ta t ion  of an a rb i t r a ry  

number of o sc i l l a to r s .  For the  purpose of subsequent discussion we w i l l  

only consider those i n e l a s t i c  in te rac t ions  i n  which one o s c i l l a t o r  

undergoes a change of energy. The sca t te r ing  which causes t h a t  o s c i l l a t o r  

t o  lose or  gain an amount of energy equal t o  n n u l t i p l e s  of i t s  l e v e l  

spacing is  known as  an n-phonon process. Phonon emission or absorption 

a re  of ten used t o  designate respect ively loss or gain of neutron energy. 

Although a l l  i n e l a s t i c  processes are  permissible so long as the energy 

conservation condition is  sa t i s f i ed ,  it can be readi ly  shown t h a t  the 

most Fmportant s ingle  i n e l a s t i c  process i s  the  one-phonon exchange. The 
+-I 

one-phonon cross sect ion u2 i s  obtained from ( 2 O j  by s e t t i n g  nX = - t “xx, 
and using the  s e r i e s  representation of I,(x) appropriate f o r  s m a l l  

arguments. + 

designated by A,. 

Here the o s c i l l a t o r  responsible f o r  the sca t te r ing  i s  

The two-phonon cross  section uL2 i s  s imi la r ly  obtained 
+2 +1 

by s e t t i n g  nX = 2 28XA0, and the r a t i o  u- /u- i s  e f f ec t ive ly  given by 

the f a c t o r  P e“’0 which i s  proportional t o  N-’. For t h i s  reason it 

i s  of ten  su f f i c i en t  t o  t r e a t  i n e l a s t i c  scat ter ing as e s s e n t i a l l y  a one- 

phonon interact ion.  The phonon-absorption process u i s  r e l a t ed  t o  

t h a t  f o r  phonon-emission u through the f ac to r  e 0. We note 

t h a t  general  remarks on energy t ransfer ,  made e a r l i e r  f o r  the  Einstein 

A0 

+n 

-n -2nv 

model, apply equally well  t o  the  present  s i tuat ion.  

+ This i s  j u s t i f i e d  since PX which appears i n  the argument contains 
a N’l f a c t o r  where N i s  the  t o t a l  number of p a r t i c l e s  i n  the 
c rys ta l .  
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While the  foregoing discussion appl ies  t o  both coherent and i n -  

coherent s c a t t e r i n g  it is  seen that the coherent cross sec t ion  contains 

an  add i t iona l  f ac to r  i n  the form of a d e l t a  funct ion.  

noted t h a t  any process must s a t i s f y  the energy requirement which f o r  one- 

o s c i l l a t o r  exc i t a t ion  becomes 

We have a l ready  

x,' p = +  n u  (VII .2 i )  

The appearance of the  d e l t a  funct ion 

d i t i o n  f o r  coherent s ca t t e r ing .  Since 7 depends upon the neutron momenta 

and phonon wave vector t h i s  condition may be in t e rp re t ed  as momentum con- 

se rva t ion  although not i n  the  sense of ordinary p r t i c l e  dynamics. we shaii 

examine i n  some d e t a i l  the  spec ia l  c a ~ e  of e l a s t i c  coherent s c a t t e r i n g .  For 

t h i s  case the momentum condition is  simply, 

6(7-2n:) imposes an add i t iona l  con- 
v.A 

Urr 

K . =  2lcx , 
y.h 

(VIS.22) 

where $ = lcf-bi. For e l a s t i c  s ca t t e r ing  k i  = kf , K = 2kisin(0/2) and 

it i s  seen t h a t  the angle of incidence is equal to  the  angle of r e f l ec t ion ;  

furthermore, the vector 

of r e f l e c t i o n  (see Figure 5 ) .  

us write 

Y is i n  the d i r e c t i o n  perpendicular t o  the plane 

For reasons which w i l l  be c l e a r  s h o r t l y  l e t  

m 

YVI Y = nL = n(ubl vu. + vk2 + wk 3 ) , (VII.23) 

where we r e c a l l  that 

l a t t i c e  a r e  in t ege r s .  Integer  n i s  such t h a t  (uvw) a r e  the  smallest  i n -  

t ege r s  having the  same r a t i o  as t h e  components p f  

A whose in t e r sec t ions  with the  l a t t i c e  bas i c  vectors  z i ( i=1,2,3)  a r e  

Y i s  a vector whose components i n  the  r ec ip roca l  
v-4 

:. Consider now plane 
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Figure 5 .  Vector Relation in Reciprocal Lattice 
Space for Elastic Coherent Scattering. 
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respect ively 1/u,  l / v ,  l / w .  We observe t h a t  the vector gl/u - z2/v 

l i e s  i n  plane A and t h a t  the s c a l a r  product of t h i s  vector with vector 

T vanishes. Therefore which i s  specified by (uvw) i s  perpendicular 

t o  plane A. Moreover the distance between plane A and the next plane 

which is parallel t o  i t  i s  ,% u ' - - - 7  -' . + I n  other words, the length of 

reciprocal  vector i s  equal t o  the  rec iproca l  of in te rp lanar  spacing of 

the s c a t t e r i n g  planes. 

vector 

yh 

7 

It i s  conventional t o  specify both the reciprocal  

i n  reciprocal  l a t t i c e  space and the s c a t t e r i n g  planes i n  c r y s t a l  

l a t t i c e  space by the same set  of integers  (uvw). These in tegers  a r e  known 

as Miller indices  and are widely used t o  denote the o r i e n t a t i o n  of a parti- 

cular  c r y s t a l  plane. 

We can now e x p l i c i t l y  exhibi t  the well-known Bragg condition f o r  

in te r fe rence  sca t te r ing .  From (22), 

or 

2d sin(Q/2) = nh,' n=1,2 ,.,., ( V I 1  .24) 

where {< = k(211O-l = h - l ,  

and d = 7- l  i s  the spacing between c r y s t a l  planes.  The f a c t o r  n is  

c a l l e d  the order of r e f l e c t i o n  s ince i t s  presence allows other  wavelengths 

h i s  the  de Broglie wavelength of the neutron, 

t o  s c a t t e r  from the same plane a t  the same angle." According t o  the  Bragg 

condition, wich i s  (24) with n=l ,  the r e f l e c t i o n  p a t t e r n  from a given set 

+ 
We are taking the second p a r a l l e l  plane as one which passes through the 
o r i g i n .  

We a r e  not i n t e r e s t e d  i n  the higher order r e f l e c t i o n s  so henceforth we 
can take n t o  be uni ty  (T- = x). 

++ 
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I 

of planes w i l l  show peaks a t  ce r t a in  s c a t t e r i n g  angles ,  each peak repre-  

sen ts  only those neutrons which s a t i s f y  the  energy-angle r e l a t ionsh ip ,  

The condition f o r  e l a s t i c  coherent s ca t t e r ing ,  Equation (22 ) ,  

suggests a simple method, of ten  known as Ewald's construct ion,  f o r  de- 

termining Bragg sca t t e r ing .  Consider a rec iproca l  l a t t i c e  (Figure 5 )  i n  

which the  reduced inc ident  wave vector %i i s  drawn such t h a t  it termi- 

nates  on a rec iproca l  l a t t i c e  poin t .  

l i e s  on a sphere of radius  ki  
vector then in te r fe rence  sca t t e r ing  from the planes normal t o  the  rec ip-  

r o c a l  l a t t i c e  vector  i s  possible.  That i s  t o  say, Bragg s c a t t e r i n g  

can occur i f  the d i f fe rence  i n  the reduced wave vectors  i s  equal t o  a 

r ec ip roca l  l a t t i c e  vector .  

I f  another rec iproca l  l a t t i c e  poin t  

centered a t  the o r ig in  of the inc ident  

A similar construct ion exists i n  i n e l a s t i c  coherent s c a t t e r i n g  

where one phonon i s  exc i ted .  The momentum condition becomes 

As an i l l u s t r a t i o n  we s h a l l  consider s c a t t e r i n g  by Aluminum (11) whi c h 

a face-centered cubic s t ruc tu re  w i t h  four  atoms per u n i t  c e l l ,  (000) 

1 1  1 1  1 1  
(2 2 0 ) ;  (2 0 2); ( 0  7 z). For Bragg s c a t t e r i n g  the  s t ruc tu re  f a c t o r  

has 

i s  

irc(u+v) + .in(v+w) irc(w+u) iK .x j  - e2fiix0~;a = l + e  
+ e  , F(UVW) = C e w * h  - 

u n i t  u n i t  
c e l l  c e l l  

which vanishes unless  u, v, w a r e  a l l  even or odd in tegers .  We therefore  

consider  i n  the rec iproca l  l a t t i c e  a plane containing some of these rec ip-  

r o c a l  l a t t i c e  poin ts ,  f o r  example, those f o r  which v and w a r e  the  same 

(Figure 6 ) .  For a given incident  neutron wavelength the s c a t t e r i n g  angle 
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@ 133 

Figure 6. Vector Relat ions i n  Reciprocal La t t i ce  fo r  
One-Phonon Coherent Sca t te r ing  by Aluminum , (l1) 
(Not t o  scale .) 
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necessary f o r  Bragg r e f l e c t i o n  by a spec i f ic  plane i s  determined from (24) 

with n = l .  By knowing t h i s  angle, c r y s t a l  o r ien ta t ions  and measuring 

hf ,  %f i s  determined. The phonon vector g i s  obtained by connecting 

3f 
i s  ro ta ted  s l i g h t l y  through an angle so  t h a t  the d i rec t ion  of incoming 

neutrons i s  along ::; . Since the analyzer and s c a t t e r i n g  angle are f ixed 

a new sca t te red  wave vector #& and a d i f f e r e n t  phonon vector are ob- 

ta ined.  Note t h a t  the angle 0 i s  computed for r e f l e c t i o n  by the 333 plane, 

bu t  the 511 plane can give rise t o  Bragg s c a t t e r i n g  as well .  

YVI 

t o  the nearest  reciprocal  l a t t i c e  point .  Now suppose the c r y s t a l  

cp 

q '  
yv\ 

Thus far we have discussed c e r t a i n  implications of the r a t h e r  

general  r e s u l t  given i n  ( 2 0 )  which i s  v a l i d  T o r  a single c r y s t a l  v h s e  

or ien ta t ion  i s  specif ied by the reciprocal  vector Y.  The d i f f e r e n t i a l  

cross sec t ion  <a(p,$)> f o r  a polycrystal ,  a macroscopic c r y s t a l  contain- 

ing many s ingle  c r y s t a l s  a t  random orientat ion,  can be obtained by averag- 

ing u(p,G) over a l l  c r y s t a l  or ientat ions or equivalently over a l l  d i rec-  

t ions  of Y, and summing over a l l  the permissible values of ; which 

give r i s e  t o  coherent sca t te r ing .  If the d i f f e r e n t i a l  cross sect ion i s  

in tegra ted  over a l l  s c a t t e r i n g  angles and f inal  neutron energies the r e -  

s u l t  w i l l  be the total  cross sect ion u f o r  neutron-crystal  i n t e r a c t i o n .  

Obviously, any attempt t o  obtain these cross sect ions f o r  the general  case 

w i l l  be 'a d i f f i c u l t  and tedious t a s k .  

Equation (20) exhib i t s  e x p l i c i t  d i rec t iona l  dependence i n  the v ibra t iona l  

frequencies cu~(k)  and polar izat ion vectors A J ( $ ) .  A t  the same time, 

evaluat ion of the Debye-Waller factor  requires  spec i f ic  knowledge of the 

\.,% 

v, 

For i n  addi t ion  t o  the :-dependence 

\\\ 
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dispersion relat ion. '  We w i l l ,  therefore ,  t u rn  t o  spec ia l  cases f o r  sub- 

sequent analysis  and i l l u s t r a t i o n .  Aspects of i n e l a s t i c  s ca t t e r ing  w i l l  

be discussed i n  terms of one-phonon process while the  Debye model i s  

adopted i n  obtaining the various' e l a s t i c  cross sect ions.  I t  w i l l  be shown 

t h a t  the i n e l a s t i c a l l y  sca t t e red  neutrons can be used , . i n  ce r t a in  ca8e8, 

t o  determine dispers ion r e l a t i o n  and v ibra t iona l  frequency d i s t r ibu t ion ,  

and t h a t  the Debye approximation afford8 a considerable 8lmplif lcat ion but  

s t i l l  leads t o  r e s u l t s  useful  i n  studying l imi t ing  case6. 

A .  One-Phonon Process and Crystal  Dynamics(12) 

We consider n e p r a t e l y  the one-phonon d i f f e r e n t i a l  incoherent 

and coherent cross sect ions as obtained from Equation (20) ,  

(VII .26) 

where the sttrall argument expression of the modified Bessel funct ion has 

been used,> and upper and lower signs denote phonon absorption and emission 

respectively," The index h reminds us t h a t  energy i s  interchanged with 

%he A-th phonon (previously cal led b) with propagation vector q and 
v\A 

+ Dispersion r e l a t i o n  cuj(j&) i r  an expression showing the dependence of the 
c i r a u l a r  frequency cu upon the d i rec t ion  of po lar iza t ion  j and wave 
p r o p g a t i o n  vector b. 
determined by geometrical s t ruc ture  and interatomic forces .  

This is a fundamental property of the c rys t a l  

++ I n  t h i s  notat ion,  cuj(q) = cuj(2flk) i s  always pas i t i ve .  
w 
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polar iza t ion  j .  I n  other  words, energy condition 

2m 
k2f - k: = - _  + y - c o j ( q )  bl (VI1 .27) 

is s a t i s f i e d  f o r  both cross sect ions.  

the momentum condition f o r  coherent s c a t t e r i n g .  

Equation (26) e x p l i c i t y  contains 

We shal l  first examine incoherent s ca t t e r ing .  According t o  (27) 

a l l  f i n a l  neutron wave vectors 
&f 

must end ins ide  o r  on a s h e l l  defined 

2 and (k i  + - 2 2m0 by two spheres of radii  max. (O,[ki - comax] 
where omax i s  the  maximum value of oj(q) f o r  a l l  q and j .  Since 

energy conservation is the only condition t o  be s a t i s f i e d ,  incoherent 
w w 

sca t t e r ing  is seen t o  occur i n  a l l  d i rec t ions ,  and the energy d i s t r i b u t i o n  

of the  sca t t e red  neutrons I s  continuous within the  she l l .  We note t h a t  

(I incoh(Ppf3.)X 

the  e f f e c t  caused by the  

nons. 

- +1 
usual ly  i s  not measured s ince  the experiment cannot i s o l a t e  

phonon from t h a t  caused by a l l  other  pho- A-th 

So no information will be l o s t  if we consider incoherent s c a t t e r i n g  

i n  terms of a cross  sec t ion  t h a t  does not depend upon the pa r t i cu la r  pho- 

non involved i n  the  in te rac t ion ,  i . e . ,  we write 

I n  most cases N i s  la rge  so t h a t  the summation over q can be replaced 
w 

by a n  in tegra t ion  over t he  reciprocal  u n i t  c e l l ,  

where V, t he  volume of the c rys ta l ,  i s  the uniform dens i ty  of d i s t r i b u -  

t i o n  of q i n  rec-tprocal space. The summation over q i n  the Debye-Waller 
m m 
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I 

1'2'tcr i s  s imi la r ly  t r e s t e d .  rJext we eliminate the d i r ec t iona l  dependence 

through polar iza t icn  by r e s t r i c t i n g  the class of c rys t a l s  under considera- 

o r  arg' t i o n ,  I t  is known t h a t  fo r  a cubic  c rys t a l  Aja(q)Ajp(g) = 6 
w. w J 

As a result, we ge t  

where 

aIkf)G\ 2 v e-2w 
a +1 

incoh (r (P,?) = 

aIkf)G\ 2 v e-2w 
a 

coth vj(q) 2w = .nK2va c $ dq % 

6 ( 2 ~ t ) ~ M  j u n i t  urj(q) c e l l  *H 

%he i n t e g r a l  can be transformed t o  an in tegra t ion  over the frequencies by 

introducing the frequency d i s t r ibu t ion  function 

b e r  of normal mode frequencies per un i t  frequency i n t e r v a l  divided by the 

t o t a l  number of frequencies.  

f (w), defined as the num- 

Fornially we can wri te  

where the in tegra t ion  i s  over a reciprocq$ u n i t  c e l l .  

f e r e n t i a l  cross  sec t ion  then becomes 

The incoherent d i f -  .: 
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Equation (29 )  i s  independent of the d i rec t ion  of K and crys%al  or ien ta-  
+1 

t i o n  but  does depend upon the sca t te r ing  angle 8 .  A t  a f ixed  0 ,  u- 
incoh 

can be measured as a function of energy t r a n s f e r  and i n  t h l s  manner it is  

possible t o  deduce the frequency d i s t r i b u t i o n  of the c r y s t a l  ,+ 

M 

The above treatment cannot be applied t o  noncubic c r y s t a l s  and 

therefore?.incoherent s c a t t e r i n g  w i l l  depend upon c r y s t a l  o r ien ta t ion .  

Hswever, as shown by Van Hove, ( 1 2 ~ 1 3 )  c e r t a i n  propert ies  of f(cu) can 

s t i l l  be determined from the energy d i s t r i b u t i o n  of sca t te red  neutrons i n  

a given d i rec t ion .  I n  p a r t i c u l a r ,  it i s  known t h a t  f (0) f o r  a general  

c r y s t a l  contains a f i n i t e  number of s i n g u l a r i t i e s  as a consequence of the 

periodic s t ruc ture .  These s i n g u l a r i t i e s  a r e  known as s ingular  frequencies 

and are generally those values where V u  {q) = 0 or equivalently where 

the d iscont inui t ies  occur i n  the f i rs t  der iva t lve  of the energy d i s t r i b u -  
-+A JVA 

t ion .  For the cubic c r y s t a l s  the  energy d i s t r i b u t i o n  leads d i r e c t l y  t o  

.the s i n g u i a r i t i e s .  Even f o r  noncxbic c r y s t a l s  the  energy d i s t r i b u t i o n  of 

incoherently sca t te red  neutrons w i l l  exhib i t  similar s i n g u l a r i t i e s  a t  

energies independent of d i r e c t i o n  of s c a t t e r i n g .  

I n  the  case of polycrystals or powder the foregoing r e s u l t s  f o r  

cubic c r y s t a l s  remain unchanged s i n c e  (29) i t 3  independent of c r y s t a l  o r ien ta-  

t ion .  For noncubic c r y s t a l s  (28) has  t o  be averaged over c r y s t a l  o r ien ta-  

t ions ;  however, the  s i n g u l a r i t i e s  can s t i l l  be observed since t h e i r  occur- 

rence i n  the energy d i s t r i b u t i o n  i s  not a f fec ted  by d i r e c t i o n a l  e f f e c t s .  

+ Most dynamical propert ies  of a c r y s t a l  can be r e l a t e d  -to i t s  dispers ion 
r e l a t i o n  and frequency d is t r ibu t ion  function. From t h i s  point  of view 
the  problems of c r y s t a l  dynamics can be considered as reduced t o  a de- 
termination of these two quant i t ies .  
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Incoherent s c a t t e r i n g  due t o  multi-phonon processes i n  general  gives r ise 

t o  a d i s t r i b u t i o n  dependent upon d i rec t ion  of s c a t t e r i n g  b u t  i s  continu- 

ously d i f f e r e n t i a b l e .  A l l  s i n g u l a r i t i e s  i n  an observed d i s t r i b u t i o n  can 

therefore be a t t r i b u t e d  t o  one-phonon processes. 

Now we examine the spectrum of coherently s c a t t e r e d  neutrons. 

As previously noted, f o r  t h i s  sca t te r ing  process there  e x i s t s  an  addi t iona l  

condition on the momentum. Combining the two conditions we can write 

( V I 1  ,30) 

I n  (30) we have made use of the f a c t  tha t  the wave vector 

up t o  2nz, where 3 i s  any reciprocal  vector eo t h a t  cOj($+2nL) = UJ($. 

For each j 

three eurfaces form the so-called sca t te r ing  surface 

q i s  defined 
Hh 

Equation (30) describes a surface i n  rec iproca l  space and the 

S.+ It can be noted 

t h a t  S is continuous and therefore neutrons can be coherently ecat tered 

i n  e l l  d i rec t ions .  On the other hand s ince the final neutron wave vector 

must end on the surface the energy d is t r ibu t ion  along any d i r e c t i o n  i s  not 

continuous ( i n  general, a vector i n  any d i rec t ion  w i l l  cross the surface 

three  or  more times). If the d iscre te  neutron energy i s  measured a t  a 

given s c a t t e r i n g  angle,  a point  on each layer  of S i s  determined. By 

repeat ing t h i s  measurement as a function of d i r e c t i o n  the dispers ion re- 

l a t i o n ,  cOj($) i s  thus obtained i n  terms of the s c a t t e r i n g  surface.  The 

d i s c r e t e  nature of the energy d i s t r i b u t i o n  enables the one-phonon coherent 

process t o  be separated from the incoherent and multi-phonon processes. 

The coherently sca t te red  neutrons i n  the polycrystal  case w i l l  exhibit, a 

+ 
Propert ies  of S were f i rs t  noted by Placzek and Van Hove, Reference 12. 
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continuous d i s t r i b u t i o n  on account of the d i r e c t i o n a l  average. For t h i s  

reason, ashgle c r y s t a l  r a t h e r  than powder i s  more s u i t a b l e  i n  l a t t i c e -  

vibratilon experiments. 

It i s  i n t e r e s t i n g  t o  note t h a t  for phonon emission (lower s ign )  

Equation (30) cannot be satisfied i f  ki < &in, where kmin = mmin 

and 

set  of c r y s t a l  planes with maximum spacing. 

Tmin  is the  smallest rec iproca l  vector which corresponds t o  t h a t  

This i s  seen t o  be 

the  Bragg cutoff  mentioned i n  Section 11. When kmin < ki < (dmaX) 2m0 112 
fi > 

the high frequency phonons cannot be exc i ted  and c e r t a i n  sca t t e r ing  d i r ec -  

t h a t  a l l  pho- t i o n s  a r e  r e s t r i c t e d .  It i s  only when ki > (T 2% 0llnax) 112 

nons can be exc i ted  and sca t t e r ing  i s  allowed i n  a l l  d i r ec t ions .  

The one-phonon coherent cross sec t ion  i s  &ven by (26). Again 

i f  we sum over a l l  q and j subject  t o  energy conservation and replace 

the q summation by an in t eg ra t ion  we obta in  
*M 

**r 

(x) { (2) - 1) -l + +(1T1)} > 

I 
I 

s ince  both A j  and w j  a r e  periodic funct ions of the rec iproca l  l a t t i c e ,  

I > then 

I 
If we now consider a f ixed  f i n a l  neutron energy, ';+E; = 

(4  k;)2 

2% 
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where ) c l  = ki - 5; and j i s  t h a t  po lar iza t ion  index f o r  which the 

energy conservation, E: = E + ~ \ L D  ( K ! ) ,  is s a t i s f i e d .  The sca t te red  

i n t e n s i t y  therefore var ies  as [(Llj(sl) ]-I. Since small 0 3 j ( f i 1 )  implies 

t h a t  - 2 1 - r ~  i s  small or  kt i s  close t o  a rec iproca l  l a t t i c e  point  

the i n t e n s i t y  peaks i n  the neighborhood of rec iproca l  l a t t i c e  vectors.  

Also f o r  small frequencies the l a t t i c e  can be considered as e s s e n t i a l l y  

i s o t r o p i c  and thus phonon polar izat ions w i l l  be purely longi tudinal  and 

purely transverse.  The d i f f e r e n t  polar izat ions can be distinguished from 

the i n t e n s i t y  because 5 I . A  ( r c l )  i s  zero and K '  f o r  the transverse and 

longi tudinal  branches respect ively.  

W, 

i -  J w  

6.j * 

B. The Debye Model and Incoherent Approximation 

We obtain from Equation (20) the single c r y s t a l ,  d i f f e r e n t i a l  

e l a s t i c  incoherent and coherent sca t te r ing  cross sect ions,  

0 2 -2w 
incoh m 

(I ( a )  = aIe , ( V I 1  .32) 

where again the small argument expression f o r  the modified Bessel function 

has been used. A s  noted previously the polycrystal l ine cross sections 

are obtained by averaging (32) and (33) over c r y s t a l  o r ien ta t ion .  

not be done without e x p l i c i t  knowledge of the  phonon polar iza t ion  and 

LUj(%).  

Debye-Waller f a c t o r  depends only upon s c a t t e r i n g  angle 8 .  I n  general ,  

however, it i s  very d i f f i c u l t  t o  solve the dynamical matrix discussed i n  

Sect ion 1. t o  obtain a~(q). On the other  hand, there  e x i s t s  a useful  

approximation, o r i g i n a l l y  proposed by Debye f o r  the theory of s p e c i f i c  

This can- 

If the c r y s t a l  i s  cubic then the previous r e s u l t  appl ies  and the 

Vn 
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heats ,  which eliminates the d i rec t iona l  dependence i n  the Debye-Waller 

f ac to r .  The Debye model assumes tha t  the c r y s t a l  l a t t i c e  can be t r ea t ed  

as an e l a s t i c  c o n t i r m  =-din t h i s  approximation it i s  shown t h a t  the 

v ibra t iona l  frequency i s  independent of d i r ec t ion  of po lar iza t ion  and i s  

l i n e a r l y  proportional t o  the magnitude of the wave vector 

with c the average sound veloci ty  in the  crystal . '  I t  I S  known t h a t  

t h i s  model has been found t o  give sa t i s f ac to ry  results i n  problems i n -  

volving a summatl,on of a l l  the .v ibra t iona1  frequencies.  Therefore it can 

be su i t ab ly  used t o  pred ic t  the energy and temperature dependence of the 

t o t a l  cross sect ion.  (4)  

butions can be sens i t i ve  t o  the d e t a i l s  of coj(q) and f ((I)), so i n  these 

cases the use of Debye approximation i s  l i k e l y  t o  be inappropriate.  

But, as  we have shown, angular and energy d i s t r i -  

"I 

For the purpose of our i l l u s t r a t i o n  w e  s h a l l  proceed w i t h  the 

above approximation. The Debye-Waller f ac to r  now becomes 

- - 4tt2 C q'l coth qc.q 
2cMN q 2koT 

= e  -2w e 

- 
= e  M , (VI1 .34) I 

where 

X kOQD 3 h2 
p = '-3 Ixcoth(-)dx . 

2(koQD) 0 -. 2k0T 

+ 
Reader unfamiliar with t h i s  aspect should see Reference 8, Chapter II. 
We note t h a t  the Debye model, when appl ied t o  a polyatomic o rys t a l ,  
ignores the op t i ca l  branch of the dispers ion r e l a t ion .  

++ This is not qu i te  t rue  since the longi tudina l  and transverse ve loc i t i e s  
a r e  d i f f e r e n t .  
e n t  discussion.  

For s impl ic i ty ,  the difference i s  ignored i n  the  pres- 
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I n  wri t ing (34) the summation of 

over the u n i t  c e l l  which could be .takerqas a spliem with radLus 

hx = ( 6 ~ r ~ N / V ) l / ~  chosen such t h a t  the t o t a l  number of wave vectors i s  

N. 

q has been replaced by an  in tegra t ion  

8~ i s  the Debye c h a r a c t e r i s t i c  temperature of the c rys ta l  defined 

. Since the  Debye-Waller f a c t o r  i s  now independent of 4 cqmax a6 f+) = 
k0 

0 
c r y s t a l  o r ien ta t ion ,  uincoh ( a ) ,  wI 

f o r  polycrystals  as w e l l .  The t o t a l  incoherent e l a s t i c  cross sec t ion  i s  

as-given by (32), i s  therefore  va l id  

The polycrystal l ine co- 
2 

For small El, ao 4m, . M 
m o '  incoh- 

where A = - 
herent  cross sect ion i s  

where subscr ipt  T denotes coherent s c a t t e r i n g  from a p a r t i c u l a r  reciprocal  

vector  (or  equivalent ly  t h a t  s e t  of c r y s t a l  planes Whose nornaal i s  p r a l l e l  

t o  &) . Since K = 2kisin(Q/2) ,  a l l  T s a t i s f y i n g  the inequal i ty  T < - ki/n 

can contr ibute  t o  coherent scattering. '  Then the total  coherent e l a s t i c  

cross  sect ion becomes 

+ This implies t h a t  a t  6ufficien;tly l o w  energy where Tmin > k i / n  the 
coherent e l a s t i c  cross sec t ion  vanishes. This i s  another way of s t a t i n g  
the Bragg cutoff .  
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I 

0 -1 
and w i l l  exh ib i t  jumps whenever a r e -  Ei We note t h a t  ucoh var ies  as 

ciprocal  vector begins t o  contr ibute .  A t  higher energies the e f f e c t  of 

addi t iona l  T I S  becomes less and less s ign i f i can t  and the  f luc tua t ions  

w i l l  eventual ly  diminish. Therefore i f  we consider s u f f i c i e n t l y  high i n -  

coming neutron energy the summation may be approximated by an i n t e g r a l .  

Upon multiplying the summand by 

ki/n t o  obta in  

2 4nvai d i  we in t eg ra t e  from zero t o  

a r e s u l t  which i s  i d e n t i c a l  t o  (35) a s ide  from the f ac to r  of s ca t t e r ing  

length ,  

incoherent cross  sec t ion  and replace a: by <a% t o  obtain the t o t a l  

cross  sec t ion  8. !This i s  known as the  incoherent approximation. I t  I s  

i n t e r e s t i n g  t o  note t h a t  i n  the  low-energy limit the t o t a l  cross sec t ion  

f o r  a monoisotopic c r y s t a l  i s  

t o  i n  the l i t e r a t u r e  as the bound-atom cross sec t ion .  

I n  t h i s  approximation it is then only necsssai-y t o  calculate the 

0 uo = ‘Jincoh- 4 x < a 3  , of ten  r e fe r r ed  

W e  will next examine the  high-energy limit which corresponds t o  

the  i n t e r a c t i o n  between a neutron and a f r e e  atom. It is  obvious t h a t  i n  

t h i s  ease the ,neutron energy w i l l  be s u f f i c i e n t l y  high f o r  the  incoherent 

approximation t o  be appl icable .  Accordingly, the d i f f e r e n t i a l  cross sec-  

ti on becomes 

(VII .36) 
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where we are only in t e re s t ed  i n  phonon-emission. The reason i s  t h a t  the 

above l i m i t  implies t h a t  we may consider the l i m i t  of vanishing tempera- 

ture;  s ince phonon-absorption i s  proportional t o  e x d -  4 r o ( k ) } ,  the  

probabi l i ty  t ha t  the neutron w i l l  gain energy therefore  vanishes as T -+ 0 .  

Equation (36) can be rewr i t ten  to give 

2k,T 

where 

As ns~ial we re$lace the 

m t i o n .  A t  the  8ame time we expand exp(-icut) i n  a power .ser ies  up t o  

order of t . Thus 

k summation by an in t eg ra t ion  In the Debye approxi- 
v) 

2 

(VI1 .38) 

It i s  in t e re s t ing  t o  observe t h a t  the  expansion requires  t h a t  

4Gxt = ko%t < 1; 

SO t h a t  for 

i n  other  words, @(t) should be l a rge  and negative 

k0QDt > - 1 the integrand e s s e n t i a l l y  does not contr ibute .  

This w i l l  be the case i f  i n  (38) 

Therefore the adove expansion ac tua l ly  corresponds t o  the  statement tha t  

momentum t r ans fe r ,  o r  r e c o i l  energy ER, is  l a rge  compared t o  the binding 

energy -- the weak binding l i m i t .  Before in se r t ing  (38) i n t o  (37) we note 

t h a t  i n  order t o  obtain the f r e e  atom r e s u l t  must be s e t  equal t o  zero.  

This  i s  because our model treats the atom as harmonically bounded i n  an 
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o s c i l l a t o r  po ten t ia l  and so  the atom w i l l  never become f r e e  unless the 

force constant i s  i d e n t i c a l l y  zero. We therefore  obtain from (37) 

The del ta  function expresses the physically obvious condition t h a t  i n  the 

i n t e r a c t i o n  between a neutron and a f r e e  atom i n i t i a l l y  a t  r e s t  the d i f -  

ference i n  neutron energies i s  necessar i ly  the r e c o i l  energy of the atom. + 

The argument of the d e l t a  function can be wr i t ten  as 

- ki (mocosG + (*-m$in20)1/2} , 
kf - (mo+M) 

In tegra t ing  (39) over fi, we f i n d  

I 

0 ; otherwise ( V I  .bo) 

A - 1  
where a! = (K) . This par t icu lar  r e s u l t ,  which can be derived from 

purely kinematic arguments:' i s  widely used t o  describe the neutron energy 

.:- ' 

moderation process i n  nuclear reactor  ana lys i s .  

f i n a l  energy we obtain 

s e c t i o n  f o r  a free p a r t i c l e .  

Integrat ing (40) over 
2 u = 47[ <a? , the cor rec t  t o t a l  s c a t t e r i n g  cross 

+ 
For a high-energy neutron (E  2 ev) atomic motion can be neglected. 

++ It  would be necessary t o  assume t h a t  the atom i s  i n i t i a l l y  a t  rest ,  
s c a t t e r i n g  i s  e l a s t i c  and isotropic  i n  the  center-of-mass laboratory 
coordinate system. 



Thus f p  our discussion has not considered the presence of sp in  

or  i n t r i n s i c  angular momentum. However, a more complete treatment should 

include the e f f e c t s  due t o  t h i s  addi t ional  degree of freedom. As w i l l  be 

seen i n  the  present sect ion,  s@n ezfec ts  cons t i tu te  another fac tor  of i n -  

coherence i n  the s c a t t e r i n g .  

Let us re-examine the  formulations presented i n  Section 111. 

Instead of (ID. 10) the Fermi pseudo-potential descr ibing neutron-nuclear 

i n t e r a c t i o n  i s  now c a s t  i n t o  a spin-dependent form, 

( V I I I  .1) 

where 

a- th  nucleus respect ively.  

a ( s ,  4 1 )  

which is regarded as an empirical  constant t o  be determined experimentally, 

w a s  introduced. If we now a s s e r t  t h a t  the neutron-nuclear in te rac t ion  con- 

sists of two p a r t s ,  only one of whlch i s  sp in  dependent, then we might put 

s and & a  are the i n t r i n s i c  angular momenta of neutron and the 
nz 

I n  order t o  e x h i b i t  an e x p l i c i t  form of 

r e c a l l  %hat i n  the e a r l i e r  instance the s c a t t e r i n g  length a&, m -  

(VIII.2) 

where b j  is another empirical  constant,  This p a r t i c u l a r  form i s  chosen 

on the basis of s implici ty ,  conservation of angular momentum ( r o t a t i o n a l  

invariance) ,  aslB inversion {space and time) invariance.  Moreover, s ince 

s = 1/2 higher powers of can always be reduced t o  the l i n e a r  form. s 
-4 

Having made the  adjustment i n  the p o t e n t i a l  we proceed accord- 

i n g l y  with the following modifications. The system eigenfunction now 

-77- 
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appears as where hS i s  a column vector specif ied by m s p  the 

proJection of nuclear spin along the z axis. '  A s  usual,  the set  

{QnXmS} i s  taken t o  be complete and orthonormal i n  the space and spin 

var iab les  of the sca t t e r ing  system. Continuing i n  a similar manner as 

before we a r r i v e  a t  an expression for  the  cross  sec t ion  [see Equation 

(I11 a) 3 

where 

of system sp in  functions,  denoted by s and ms respec t ive ly ,  Pmso,so 

i s  the probabi l i ty  t h a t  the  system and neutron have i n i t i a l  s t a t e s  

and so, and other quan t i t i e s  i n  '&e e q a t i o n  have meanings previously 

assigned i n  Sect ian TTX. Although i t  i s  possible t o  perform experiments 

i n  which neutron and system i n i t i a l  sp in  states a re  prepared we w i l l  assume 

tha t  nei ther  the neutron and system sp in  states can be spec i f ied  nor can 

the neutron f i n a l  spin states be observed (system f i n a l  states are never 

observed) 

t a i n  a sum over a l l  sp in  s t a t e s .  

Im,s> represents  the product of neutron spin funct ion and the  set 

mSO 

Under t h i s  condition the cross sec t ion ,  as wr i t t en  above, con- 

If we again separate the cross  sect ion i n t o  two p a r t s  R=Q' and 

Q f Q ' ,  then the spin-dependent factors  i n  the d i r e c t  s ca t t e r ing  and 

+ It i s  t o  be noted t h a t  the separation of sp in  dependence from coordinate 
dependence i s  not always allowed. It i s  known t h a t  fo r  some polyatomic 
gases and l i qu ids  spin can be coupled t o  i n t e r n a l  degrees of freedom of 
the molecule, 
including the monatomic case.  

However such a separation i s  rigorous f o r  most c rys t a l s  
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interference s c a t t e r i n g  a r e  

,and 

(VI11 .4) 

where ,Ja = 5 + iQ. A s  the present representation does not diagonalize 

the indicated matrix elements are  not easily obtained. Howeverp it 

i s  possible t o  construct by an appropriate l i n e a r  combination of the 

Irn,s> 

Of J along the z a x i s ,  a r e  diagonaiized, ?*!e shall labe'. these states 

s t a t e s  a representat ion i n  which J2, s2> and Jz, the component 

I 

as I jo such that  

I n  t h i  representat ion,  (4) be 
the spins)  

omes (temporarily suppressing subscr ipt  4 i n  

where the magnitude of $ 
i n i t i a l l y  the  sca t te r ing  system and neutron have t o t a l  spin j and z -  

component m ,  The t w o  values which J can assume a r e  j = I 2 112 since 

the magnitude of the neutron spfn i s  1/2, The t o t a l  num'ber o f  s p i n  Etates 

f o r  the e n t i r e  system i s  2 J s l  = 2 ( 2 I + l ) ,  or (2It1) nilclear or ien ta t ions  

each of which corresponds t o  t w o  neutron or ien ta t ions .  

is I(I+L), and Pjm i s  the probabi l i ty  t ha t  

Thus? f o r  (7) we 
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have 

9 
I 2  + -  - I+1 a2 - -  

21+1 a+ 211-1 aQ- 

where 

I 
aa+ = aa + b Q  2 

and 
I+1 - 
2 aQ, = aa - b 

a r e  the  new sca t t e r ing  lengths  corresponding respec t ive ly  t o  the cases i n  

which neutron spin i s  p a r a l l e l  and a n t i p a r a l l e l  t o  nuclear spin.  

next the  sum ( 5 )  which can be wr i t ten  as 

Consider 

Fortunately the  l as t  three  terms a l l  vanish because they a r e  of the form 

m Cpm<mI9  I* 9 

which corresponds t o  the average o f a v e c b  i n  a system i n  which the  vectors  

a r e  randomly or ien ted .  Then (8) becomes simply aaaal or i n  terms of the 

new s c a t t e r i n g  lengths ,  

a l l )  (VIII.~) ajajl = (- I j+l I a  Ij'+1 IQ' 
21 J+1 aa+ + 2IQ+1 aJ - ) (21a '+ l  ai+ + 2IQl+1 
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Using the above results we can proceed t o  carry out the summation 

over 1. For the d i r e c t  s ca t t e r ing  term i= i l ,  we have 

IQ+1 2 + -  I i  
ai,) 2 = N{C* a> + ,I a 3 1  a 2IQ+1 aa+ 2IQ+1 21+1 21+1 c (- 

and f o r  the interference term, i f i l ,  using ( 9 ) )  

where i so topic  average < > has i t s  usual meaning. After a s l i g h t  r e -  

arrangement the sca t te r ing  lengths appearing i n  the incoherent and coherent 

cross sectiorra are r e s w c t i v e l y  (see VI .20) + 

I+1 2 I I +1 I 2 a: = {+ a > + <- a% - c- a + - 2I+l  + 21+1 - 21+1 + 21+1 1 ' 
and 

2 
a_> . aC 2 = + a + + -  I +1 I 

214-1 21+1 

In the  monoisotopic case we obtain 

and 
2 

I a,) 2 - ( I+1 a c -  -a++- 
21+1 21+1 

(VIII.10) 

+ A simple example of spin-dependent s ca t t e r ing  is t h e  case of s ca t t e r ing  
For neutron-proton sca t t e r ing  the  r a t i o  of spin-dependent by hydrogen. 

f ac to r s  f o r  interference versus d i r e c t  s ca t t e r ing  is given by 

Conventionally t h i s  r a t i o  is often regarded a8 t h a t  of coherent s c a t t e r -  
ing length squared t o  incoherent s ca t t e r ing  length squared, and i n  t h i s  
sense sca t t e r ing  by hydrogen is e s s e n t i a l l y  a l l  incoherent. 
t h a t t h i s  terminology is somewhat d i f f e ren t  from t h a t  used i n  t h i s  writ- 
ing. 

"&aI 2 2  + a:)-' = .025 so t h e  interference e f f e c t s  are qu i t e  negl igible .  

I 

We note 

Similar remarks also apply t o  t h e  case of vanadium. 
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The above r e s u l t s  ind ica te  h a t  incoherent s ca t t e r ing  can ar - se 

from the  exis tence of e i t h e r  i sg topic  mixture gr nuclear spin.  Moreover, 

from the  d e f i n i t i o n  of a+ and a, the coherent f ac to r  (10) can be 

wr i t t en  as , Thus it i s  seen t h a t  the  spin-dependent p a r t  of the  i n -  

t e r a c t i o n  po ten t i a l  leads t o  incoherent s c a t t e r i n g  whereas coherent s c a t t e r -  

ing depends only upon the  spin-independent part of the  p o t e n t i a l .  

2 



APPENDIX A 

ss ' To prove t h a t  D k m I  i s  Hermitian observe t h a t  
m 

ss s s t  -2nik-g j  
Dkml = DQCmle 9 

w 

where 

i s  r e a l .  Since 

then by wri t ing ..4" = 1-..4l and noting t h a t  54 = aigi we have 

This proves the Hermiticity of the dynanical matrix.  

prove Equatton ( V I  .14), 

t o  obtain 

Now it remains t o  

S* S 
ekja = e,kjQ . Take complex conjugate of ( V I  .12) 

'.U \% 

I 

Comparing t h i s  equation with (VI.12) we obtain (VI.14) provided, of course, 

To show t h i s ,  consider the secular equation f o r  the  so lu t ion  of 

( V I  * 12) 

-83 - 
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Again by complex conjugation 

It .is clear that ( A - 1 )  f9llows. 



APPENDIX B 

I n  order t o  prove the -operator i d e n t i t y  

1 
A B - A+B+ Z [ A , B I  , e e  - e  

where A and B commute wi th  the commutatar [A,B] ,  consider the d i f f e r -  

e n t i a l  equation 

- = ( A + B ) J ~  , 
aa 

where operators A, B a re  independent of CY. The so lu t ion  of t h i s  equa- 

t i o n  i s  
a ( A + B )  

Jr = Jroe 9 

where Jro i s  the value of J, a t  Q! = 0. Next consider the transformation 

which leads t o  the d i f f e r e n t i a l  equation for a, 

where 

s ince [ A , [ A , B ] ]  = [ B , [ A , B ] ]  = 0. The e x p l i c i t  dependence on a enables 

us t o  wri te  the solut ion 

2 
+ r [ A , B l  

0 = OOe 7 

or 

-05- 
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Comparison with (B-2) and s e t t i n g  a = 1 yie ld  

A+B B A 
e = e e e  

Interchanging A with B gives the  i d e n t i t y  (B-1). 
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